Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export.

Tytuł:
A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export.
Autorzy:
van den Boomen DJH; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK. .
Sienkiewicz A; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK.
Berlin I; Leiden University Medical Centre, Leiden University, Leiden, The Netherlands.
Jongsma MLM; Leiden University Medical Centre, Leiden University, Leiden, The Netherlands.
van Elsland DM; Leiden University Medical Centre, Leiden University, Leiden, The Netherlands.
Luzio JP; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
Neefjes JJC; Leiden University Medical Centre, Leiden University, Leiden, The Netherlands.
Lehner PJ; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK. .
Źródło:
Nature communications [Nat Commun] 2020 Nov 03; Vol. 11 (1), pp. 5559. Date of Electronic Publication: 2020 Nov 03.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Protein Multimerization*
Cholesterol/*metabolism
Intracellular Signaling Peptides and Proteins/*metabolism
Lysosomes/*metabolism
rab GTP-Binding Proteins/*metabolism
Biological Transport ; CRISPR-Cas Systems/genetics ; Cholesterol, LDL/metabolism ; Endosomes/metabolism ; Endosomes/ultrastructure ; Fluorescent Dyes/metabolism ; Genome, Human ; Guanine Nucleotide Exchange Factors/metabolism ; HEK293 Cells ; HeLa Cells ; Homeostasis ; Humans ; Hydroxymethylglutaryl-CoA Synthase/metabolism ; Lysosomes/ultrastructure ; Models, Biological ; Multiprotein Complexes/metabolism ; Niemann-Pick C1 Protein ; Protein Binding ; rab7 GTP-Binding Proteins
References:
Nat Commun. 2017 Jan 04;8:14034. (PMID: 28051187)
Elife. 2016 Jun 09;5:. (PMID: 27278775)
J Biol Chem. 2002 Sep 6;277(36):33300-10. (PMID: 12070139)
J Biol Chem. 2018 Jan 12;293(2):731-739. (PMID: 29184002)
Dis Model Mech. 2019 Feb 22;12(2):. (PMID: 30709847)
Curr Biol. 2012 Nov 20;22(22):2135-9. (PMID: 23084991)
Cell Res. 2016 May;26(5):593-612. (PMID: 26987402)
Nat Methods. 2012 Oct;9(10):1005-12. (PMID: 22961245)
Curr Biol. 2010 Feb 9;20(3):198-208. (PMID: 20116244)
Biochemistry. 1986 Apr 8;25(7):1562-8. (PMID: 3707893)
J Biol Chem. 2009 May 1;284(18):12110-24. (PMID: 19265192)
Nat Commun. 2019 Feb 19;10(1):829. (PMID: 30783101)
Curr Protoc Cell Biol. 2006 Apr;Chapter 4:Unit 4.7. (PMID: 18228493)
Traffic. 2017 Apr;18(4):209-217. (PMID: 28191915)
J Biol Chem. 2002 Dec 6;277(49):47917-27. (PMID: 12364329)
Nat Protoc. 2015 Jun;10(6):845-58. (PMID: 25950237)
Nature. 2010 Apr 1;464(7289):778-82. (PMID: 20305638)
Genome Biol. 2009;10(3):R25. (PMID: 19261174)
Elife. 2015 Dec 08;4:. (PMID: 26646182)
Mol Biol Cell. 2014 May;25(10):1608-19. (PMID: 24623720)
J Cell Biol. 2009 Jun 29;185(7):1209-25. (PMID: 19564404)
Nat Biotechnol. 2016 Feb;34(2):184-191. (PMID: 26780180)
Biochem Biophys Res Commun. 2005 Sep 16;335(1):154-61. (PMID: 16055087)
Cell. 2009 Jun 26;137(7):1213-24. (PMID: 19563754)
Curr Biol. 2010 Sep 28;20(18):1654-9. (PMID: 20797862)
Nat Commun. 2017 May 05;8:15178. (PMID: 28474669)
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8. (PMID: 15980461)
Elife. 2016 Sep 22;5:. (PMID: 27657169)
J Biol Chem. 2008 Mar 28;283(13):8229-36. (PMID: 18216017)
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19338-43. (PMID: 20974968)
Traffic. 2007 Dec;8(12):1676-86. (PMID: 17897319)
Chem Sci. 2016 Jan 1;7(1):752-758. (PMID: 28791116)
Arterioscler Thromb Vasc Biol. 2009 Apr;29(4):431-8. (PMID: 19299327)
J Cell Biol. 2017 Oct 2;216(10):3307-3321. (PMID: 28860274)
Science. 2015 Nov 27;350(6264):1096-101. (PMID: 26472758)
Cell Death Differ. 2014 Mar;21(3):348-58. (PMID: 24440914)
J Cell Biol. 2018 Oct 1;217(10):3625-3639. (PMID: 30093493)
Cell. 2016 Jun 30;166(1):152-66. (PMID: 27368102)
Elife. 2014 May 27;3:e02866. (PMID: 24867644)
Methods Cell Biol. 2012;108:367-93. (PMID: 22325611)
Cell. 1997 May 2;89(3):331-40. (PMID: 9150132)
Cell. 2015 Apr 9;161(2):291-306. (PMID: 25860611)
Genome Biol. 2014;15(12):554. (PMID: 25476604)
Cells. 2016 Aug 18;5(3):. (PMID: 27548222)
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):7941-3. (PMID: 27410046)
Nature. 2018 Feb 15;554(7692):382-386. (PMID: 29364868)
EMBO J. 2001 Feb 15;20(4):683-93. (PMID: 11179213)
J Cell Sci. 2009 Jul 15;122(Pt 14):2371-82. (PMID: 19531583)
J Clin Invest. 2002 Jun;109(12):1541-50. (PMID: 12070301)
EMBO J. 2017 May 15;36(10):1412-1433. (PMID: 28377464)
Cell Rep. 2017 May 30;19(9):1807-1818. (PMID: 28564600)
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22619-22623. (PMID: 31636202)
J Cell Biol. 2008 Nov 3;183(3):513-26. (PMID: 18981234)
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. (PMID: 30395289)
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18932-6. (PMID: 22065762)
J Cell Sci. 2014 Mar 1;127(Pt 5):1043-51. (PMID: 24413168)
J Cell Biol. 1996 Nov;135(3):611-22. (PMID: 8909537)
J Biochem. 1998 Jun;123(6):1191-8. (PMID: 9604010)
J Biol Chem. 2019 Feb 1;294(5):1706-1709. (PMID: 30710017)
J Cell Sci. 2016 Jan 15;129(2):329-40. (PMID: 26627821)
Cell. 2010 Apr 30;141(3):497-508. (PMID: 20434987)
Sci Rep. 2019 Mar 28;9(1):5292. (PMID: 30923329)
J Struct Biol. 2011 Jul;175(1):62-72. (PMID: 21473917)
Curr Biol. 2001 Oct 30;11(21):1680-5. (PMID: 11696325)
Nat Commun. 2018 Sep 10;9(1):3671. (PMID: 30202070)
J Cell Biol. 2011 Jan 10;192(1):121-35. (PMID: 21220512)
Nature. 2015 Apr 9;520(7546):234-8. (PMID: 25855459)
Mol Cell Biol. 2017 Dec 13;38(1):. (PMID: 29038162)
PLoS One. 2013 Dec 27;8(12):e83716. (PMID: 24386262)
J Biol Chem. 1999 Jul 30;274(31):21861-6. (PMID: 10419504)
Nat Commun. 2010 Jul 13;1:38. (PMID: 20802798)
Cell. 2010 Jun 25;141(7):1220-9. (PMID: 20603002)
Elife. 2018 Dec 13;7:. (PMID: 30543180)
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10079-84. (PMID: 27551080)
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15287-92. (PMID: 18772377)
Mol Biol Cell. 2005 Dec;16(12):5480-92. (PMID: 16176980)
Grant Information:
084957/Z/08/Z United Kingdom WT_ Wellcome Trust; MR/R009015/1 United Kingdom MRC_ Medical Research Council; United Kingdom WT_ Wellcome Trust; 100140 United Kingdom WT_ Wellcome Trust; 210688/Z/18/Z United Kingdom WT_ Wellcome Trust; MR/R0009015/1 United Kingdom MRC_ Medical Research Council
Substance Nomenclature:
0 (Cholesterol, LDL)
0 (Fluorescent Dyes)
0 (Guanine Nucleotide Exchange Factors)
0 (Intracellular Signaling Peptides and Proteins)
0 (Multiprotein Complexes)
0 (NPC1 protein, human)
0 (Niemann-Pick C1 Protein)
0 (rab7 GTP-Binding Proteins)
0 (rab7 GTP-binding proteins, human)
97C5T2UQ7J (Cholesterol)
EC 2.3.3.10 (HMGCS1 protein, human)
EC 2.3.3.10 (Hydroxymethylglutaryl-CoA Synthase)
EC 3.6.5.2 (rab GTP-Binding Proteins)
Entry Date(s):
Date Created: 20201104 Date Completed: 20201124 Latest Revision: 20230726
Update Code:
20240105
PubMed Central ID:
PMC7642327
DOI:
10.1038/s41467-020-19032-0
PMID:
33144569
Czasopismo naukowe
Cholesterol import in mammalian cells is mediated by the LDL receptor pathway. Here, we perform a genome-wide CRISPR screen using an endogenous cholesterol reporter and identify >100 genes involved in LDL-cholesterol import. We characterise C18orf8 as a core subunit of the mammalian Mon1-Ccz1 guanidine exchange factor (GEF) for Rab7, required for complex stability and function. C18orf8-deficient cells lack Rab7 activation and show severe defects in late endosome morphology and endosomal LDL trafficking, resulting in cellular cholesterol deficiency. Unexpectedly, free cholesterol accumulates within swollen lysosomes, suggesting a critical defect in lysosomal cholesterol export. We find that active Rab7 interacts with the NPC1 cholesterol transporter and licenses lysosomal cholesterol export. This process is abolished in C18orf8-, Ccz1- and Mon1A/B-deficient cells and restored by a constitutively active Rab7. The trimeric Mon1-Ccz1-C18orf8 (MCC) GEF therefore plays a central role in cellular cholesterol homeostasis coordinating Rab7 activation, endosomal LDL trafficking and NPC1-dependent lysosomal cholesterol export.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies