Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Label-free optical antibody testing kit based on a self-assembled whispering-gallery-mode microsphere.

Tytuł:
Label-free optical antibody testing kit based on a self-assembled whispering-gallery-mode microsphere.
Autorzy:
Yue Y; School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Ding H; School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Chen C; School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Źródło:
Journal of biophotonics [J Biophotonics] 2021 Mar; Vol. 14 (3), pp. e202000338. Date of Electronic Publication: 2020 Nov 23.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Weinheim : Wiley-VCH
MeSH Terms:
COVID-19 Serological Testing*
Microspheres*
Antibodies, Viral/*immunology
COVID-19/*diagnosis
Silicon Dioxide/*chemistry
Antigens/immunology ; Biosensing Techniques ; COVID-19/immunology ; Coronavirus Nucleocapsid Proteins/immunology ; Epidemics ; Humans ; Immunoglobulin G/immunology ; Immunoglobulin M/immunology ; Optics and Photonics ; Phosphoproteins/immunology ; Polymethyl Methacrylate/chemistry ; SARS-CoV-2 ; Silanes
References:
B. Bohunicky, S. A. Mousa, Nanotechnol., Sci. Appl. 2010, 4, 1.
A. Amine, H. Mohammadi, I. Bourais, G. Palleschi, Biosens. Bioelectron. 2006, 21, 1405.
B. V. Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. D. Coen, P. Dubruel, R. Blust, J. Robbens, Biosens. Bioelectron. 2010, 26, 1178.
K. R. Rogers, Anal. Chim. Acta 2006, 568, 222.
S. Hashida, K. Hashinaka, S. Ishikawa, E. Ishikawa, J. Clin. Lab. Anal., 1988, 11, 267.
Z. Li, Y. Yi, X. Luo, N. Xiong, F. Ye, J. Med. Virol. 2020, 92, 1518.
A. Sa-Ngasang, S. Anantapreecha, A. A-Nuegoonpipat, S. Chanama, S. Wibulwattanakij, K. Pattanakul, P. Sawanpanyalert, I. Kurane, Epidemiol. Infect. 2006, 134, 820.
H. Ma, W. Zeng, H. He, D. Zhao, Y. Yang, D. Jiang, P. Zhou, Y. Qi, W. He, C. Zhao, R. Yi, X. Wang, B. Wang, Y. Xu, Y. Yang, A. J. Kombe Kombe, C. Ding, J. Xie, Y. Gao, L. Cheng, Y. Li, X. Ma, T. Jin, medRxiv 2020. https://doi.org/10.1038/s41423-020-0474-z.
X. Sun, X. Zhao, T. Jian, J. Zhou, F. S. Chu, Int. J. Food Microbiol. 2005, 99, 185.
M. R. Salimi-Bejestani, J. W. Mcgarry, S. Felstead, P. Ortiz, A. Akca, D. J. L. Williams, Res. Vet. Sci. 2005, 78, 177.
D. D. Robert, T. Mageli, M. D. A. Fernandez, H. Barbara, Clin. Chem. 2020, 49, 940.
C. H. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, L. Yang, Appl. Phys. Lett. 2009, 94, 231119.
R. Henze, T. Seifert, J. M. Ward, O. Benson, Opt. Lett. 2011, 36, 4536.
V. D. Ta, R. Chen, D. M. Nguyen, H. Sun, Appl. Phys. Lett. 2013, 102, 031107.
A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 148.
Y. J. Chen, W. Xiang, J. Klucken, F. Vollmer, Nanotechnology 2016, 27, 164001.
A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, Biosens. Bioelectron. 2008, 23, 939.
T. Tajiri, S. Matsumoto, T. Imato, T. Okamoto, M. Haraguchi, IEEE Sens. 2014, 641. https://doi.org/10.1109/ICSENS.2014.6985080.
D. X. Xu, M. Vachon, A. Densmore, R. Ma, J. H. Schmid, Opt. Lett. 2010, 35, 2771.
M. S. Mcclellan, L. L. Domier, R. C. Bailey, Biosens. Bioelectron. 2012, 31, 388.
W. Zeng, G. Liu, H. Ma, D. Zhao, T. Jin, Biochem. Biophys. Res. Commun. 2020, 527, 618.
D. Hui, Y. Ying, C. Han, S. Chen, Opt. Lett. 2018, 43, 2619.
G. Schweiger, M. Horn, J. Opt. Soc. Am. B 2006, 23, págs, 212.
M. C. Goncalves, J. Bras, R. M. Almeida, J. Sol-Gel Sci. Technol. 2007, 42, 135.
B. N. Khlebtsov, V. Khanadeev, N. G. Khlebtsov, Langmuir 2008, 24, 8964.
T. Osajima, M. Suzuki, S. Neya, T. Hoshino, J. Mol. Graph. Modell. 2014, 53, 128.
Grant Information:
51777150 National Natural Science Foundation of China
Contributed Indexing:
Keywords: WGM sensor; antibody detection; biosensor; self assembly
Substance Nomenclature:
0 (Antibodies, Viral)
0 (Antigens)
0 (Coronavirus Nucleocapsid Proteins)
0 (Immunoglobulin G)
0 (Immunoglobulin M)
0 (Phosphoproteins)
0 (Silanes)
0 (nucleocapsid phosphoprotein, SARS-CoV-2)
7631-86-9 (Silicon Dioxide)
9011-14-7 (Polymethyl Methacrylate)
Entry Date(s):
Date Created: 20201105 Date Completed: 20210315 Latest Revision: 20210315
Update Code:
20240105
DOI:
10.1002/jbio.202000338
PMID:
33151629
Czasopismo naukowe
The appearance of antibodies in blood is a critical signal to suggest the infection. A rapid and accurate detection method for the antibody is significant to the disease diagnosis, especially for the epidemic. To this end, a highly sensitive whispering-gallery-mode (WGM) optical testing kit is designed and fabricated for detecting the specific immunoglobulin antibodies. The key component of the kit is a silica self-assembled microsphere decorated with the nucleocapsid proteins (N-proteins) of the SARS-CoV-2 virus. After the N-protein antibody immunoglobulin G (N-IgG) and immunoglobulin M (N-IgM) solutions being injected into the kit, the WGM red-shifts due to the antigen-antibody reaction. The wavelength displacement rates are proportional to the concentrations of these two antibodies from 1 to 100 μg/mL. A good specificity of the kit is demonstrated by the nonspecific human immunoglobulin G (H-IgG) and immunoglobulin M (H-IgM).
(© 2020 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies