Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Avian phenotypic convergence is subject to low genetic constraints based on genomic evidence.

Tytuł:
Avian phenotypic convergence is subject to low genetic constraints based on genomic evidence.
Autorzy:
Chen YC; Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
Kuo HC; Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
Lo WS; Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
Hung CM; Biodiversity Research Center, Academia Sinica, Taipei, Taiwan. .
Źródło:
BMC evolutionary biology [BMC Evol Biol] 2020 Nov 07; Vol. 20 (1), pp. 147. Date of Electronic Publication: 2020 Nov 07.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2001-
MeSH Terms:
Evolution, Molecular*
Phenotype*
Phylogeny*
Birds/*classification
Animals ; Behavior, Animal ; Genomics ; Selection, Genetic
References:
Philos Trans R Soc Lond B Biol Sci. 2019 Jul 22;374(1777):20190102. (PMID: 31154976)
Nat Genet. 2013 May;45(5):563-6. (PMID: 23525076)
Mol Cell Biol. 2012 Dec;32(24):5140-50. (PMID: 23071095)
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613. (PMID: 30476243)
Mol Ecol. 2019 Feb;28(3):568-583. (PMID: 30298567)
Mol Biol Evol. 2016 Dec;33(12):3299-3307. (PMID: 27634870)
Mol Biol Evol. 2015 Apr;32(4):846-58. (PMID: 25582594)
Nat Methods. 2017 Jun;14(6):587-589. (PMID: 28481363)
Trends Ecol Evol. 2006 Jul;21(7):362-8. (PMID: 16713653)
Am Nat. 2017 Aug;190(S1):S29-S43. (PMID: 28731826)
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8986-91. (PMID: 19416880)
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
Curr Biol. 2010 Jan 26;20(2):R53-4. (PMID: 20129036)
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20663-8. (PMID: 24306929)
Science. 2018 Nov 9;362(6415):. (PMID: 30409860)
Philos Trans R Soc Lond B Biol Sci. 2019 Jul 22;374(1777):20180240. (PMID: 31154969)
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20437-42. (PMID: 18077320)
Mol Biol Evol. 2015 May;32(5):1232-6. (PMID: 25631926)
Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82. (PMID: 20959295)
Nature. 2010 Apr 1;464(7289):757-62. (PMID: 20360741)
Nat Protoc. 2009;4(1):44-57. (PMID: 19131956)
Science. 2008 Jun 27;320(5884):1763-8. (PMID: 18583609)
Science. 2010 Jan 15;327(5963):302-5. (PMID: 20007865)
Prog Neurobiol. 1996 Oct;50(2-3):109-32. (PMID: 8971980)
J Hum Evol. 2009 Dec;57(6):672-87. (PMID: 19733900)
Bioessays. 2016 Jul;38(7):694-703. (PMID: 27172298)
Genome Res. 2004 May;14(5):988-95. (PMID: 15123596)
Mol Biol Evol. 2015 May;32(5):1237-41. (PMID: 25631925)
Nat Genet. 2000 Aug;25(4):453-7. (PMID: 10932194)
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2113-7. (PMID: 20080544)
Nat Genet. 2015 Mar;47(3):272-5. (PMID: 25621460)
Mol Biol Evol. 2007 Aug;24(8):1586-91. (PMID: 17483113)
Science. 2014 Dec 12;346(6215):1311-20. (PMID: 25504712)
Evol Lett. 2018 Jul 17;2(4):341-354. (PMID: 30283686)
Trends Ecol Evol. 2009 Jun;24(6):332-40. (PMID: 19307040)
Nature. 2015 Oct 22;526(7574):569-73. (PMID: 26444237)
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12. (PMID: 16845082)
Science. 2009 Jun 19;324(5934):1561-4. (PMID: 19541996)
Curr Biol. 2009 Jul 14;19(13):1140-5. (PMID: 19500990)
Am Nat. 2017 Aug;190(S1):S1-S12. (PMID: 28731831)
Science. 2014 Dec 12;346(6215):1320-31. (PMID: 25504713)
Mol Biol Evol. 2016 Sep;33(9):2182-92. (PMID: 27329977)
Genome Res. 2011 Mar;21(3):349-56. (PMID: 21270173)
J Neurosci. 2003 Feb 15;23(4):1133-41. (PMID: 12598601)
Naturwissenschaften. 2017 Jun;104(5-6):45. (PMID: 28477271)
Proc Biol Sci. 2012 Dec 22;279(1749):5039-47. (PMID: 23075840)
Bioinformatics. 2009 May 1;25(9):1189-91. (PMID: 19151095)
Nature. 2004 Dec 9;432(7018):717-22. (PMID: 15592405)
Evolution. 2011 Jul;65(7):1827-40. (PMID: 21729041)
Mol Biol Evol. 2015 Jan;32(1):268-74. (PMID: 25371430)
Nucleic Acids Res. 2019 Jan 8;47(D1):D649-D659. (PMID: 30357420)
Mol Phylogenet Evol. 2004 Dec;33(3):908-21. (PMID: 15522812)
Science. 1977 Jun 10;196(4295):1161-6. (PMID: 860134)
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10557-62. (PMID: 16000407)
Mol Phylogenet Evol. 1994 Sep;3(3):248-55. (PMID: 7820288)
Science. 2016 Oct 21;354(6310):289. (PMID: 27846519)
Nat Rev Genet. 2013 Nov;14(11):751-64. (PMID: 24105273)
Evolution. 2004 Nov;58(11):2558-73. (PMID: 15612298)
Nature. 2013 Oct 10;502(7470):228-31. (PMID: 24005325)
Nucleic Acids Res. 2005 Jan 20;33(2):511-8. (PMID: 15661851)
Science. 2016 Oct 21;354(6310):336-339. (PMID: 27846568)
BMC Bioinformatics. 2011 Jan 26;12:35. (PMID: 21269502)
J Theor Biol. 2008 May 7;252(1):1-14. (PMID: 18321532)
Gigascience. 2014 Dec 11;3(1):26. (PMID: 25671091)
Trends Ecol Evol. 2011 Jun;26(6):298-306. (PMID: 21459472)
Contributed Indexing:
Keywords: Convergent evolution; Foot-propelled diving birds; Genetic constraint; Genomic comparison; Nocturnal birds; Raptors
Molecular Sequence:
figshare 10.6084/m9.figshare.13175135
Entry Date(s):
Date Created: 20201108 Date Completed: 20201125 Latest Revision: 20201125
Update Code:
20240105
PubMed Central ID:
PMC7648321
DOI:
10.1186/s12862-020-01711-7
PMID:
33160317
Czasopismo naukowe
Background: Phenotypic convergence between distinct species provides an opportunity to examine the predictability of genetic evolution. Unrelated species sharing genetic underpinnings for phenotypic convergence suggests strong genetic constraints, and thus high predictability of evolution. However, there is no clear big picture of the genomic constraints on convergent evolution. Genome-based phylogenies have confirmed many cases of phenotypic convergence in birds, making them a good system for examining genetic constraints in phenotypic convergence. In this study, we used hierarchical genomic approaches to estimate genetic constraints in three convergent avian traits: nocturnality, raptorial behavior and foot-propelled diving.
Results: Phylogeny-based hypothesis tests and positive selection tests were applied to compare 16 avian genomes, representing 14 orders, and identify genes with strong convergence signals. We found 43 adaptively convergent genes (ACGs) associated with the three phenotypic convergence cases and assessed genetic constraints in all three cases, from (amino acid) site mutations to genetic pathways. We found that the avian orders shared few site mutations in the ACGs that contributed to the convergent phenotypes, and that these ACGs were not enriched in any genetic pathways. In addition, different pairs of orders with convergent foot-propelled diving or raptorial behaviors shared few ACGs. We also found that closely related orders that shared foot-propelled diving behavior did not share more ACGs than did distinct orders, suggesting that convergence among these orders could not be explained by their initial genomic backgrounds.
Conclusions: Our analyses of three avian convergence events suggest low constraints for phenotypic convergence across multiple genetic levels, implying that genetic evolution is unpredictable at the phylogenetic level of avian order. Ours is one of first studies to apply hierarchical genomic examination to multiple avian convergent cases to assess the genetic constraints in life history trait evolution.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies