Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3.

Tytuł:
Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3.
Autorzy:
Lv J; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China. .
Yu K; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Wei J; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Gui H; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Liu C; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Liang D; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Wang Y; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Zhou H; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Carlin R; Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
Rich R; Seeds Research, Syngenta Seeds Research, Junction City, KS, USA.
Lu T; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Que Q; Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
Wang WC; Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
Zhang X; Seeds Research, Syngenta Biotechnology China, ZhongGuanCun Life Science Park, Beijing, China.
Kelliher T; Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA. .
Źródło:
Nature biotechnology [Nat Biotechnol] 2020 Dec; Vol. 38 (12), pp. 1397-1401. Date of Electronic Publication: 2020 Nov 09.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York Ny : Nature America Publishing
Original Publication: New York, NY : Nature Pub. Co., [1996-
MeSH Terms:
Gene Editing*
Haploidy*
Centromere/*metabolism
Histones/*metabolism
Triticum/*genetics
Alleles ; Amino Acid Sequence ; Base Sequence ; Crosses, Genetic ; Diploidy ; Histones/chemistry ; Phenotype
References:
Chang, M. T. & Coe, E. in Molecular Genetics Approaches to Maize Improvement (eds Kriz, A. L. & Larkins, B. A.) 127–142 (Springer, 2009).
Jacquier, N. M. A. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020). (PMID: 10.1038/s41477-020-0664-9)
Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019). (PMID: 10.1038/s41587-019-0038-x)
Ravi, M. & Chan, S. W. Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615–618 (2010). (PMID: 10.1038/nature08842)
Kuppu, S. et al. Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS Genet. 11, e1005494 (2015). (PMID: 10.1371/journal.pgen.1005494)
Kuppu S., et al. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol. J. 18, 2068–2080 (2020).
Kelliher, T. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front. Plant Sci. 7, 414 (2016). (PMID: 10.3389/fpls.2016.00414)
Kelliher, T. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105–109 (2017). (PMID: 10.1038/nature20827)
Gilles, L. M. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 36, 707–717 (2017). (PMID: 10.15252/embj.201796603)
Liu, C. et al. A 4-bp Insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol. Plant 10, 520–522 (2017). (PMID: 10.1016/j.molp.2017.01.011)
Yao, L. et al. OsMATL mutation induces haploid seed formation in Indica rice. Nat Plants 4, 530–533 (2018). (PMID: 10.1038/s41477-018-0193-y)
Liu, C. et al. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J. 18, 316–318 (2020). (PMID: 10.1111/pbi.13218)
Liu, H. et al. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 71, 1337–1349 (2020). (PMID: 10.1093/jxb/erz529)
Zhong, Y. et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat. Plants 6, 466–472 (2020). (PMID: 10.1038/s41477-020-0658-7)
Kalinowska, K. et al. State-of-the-art and novel developments of in vivo haploid technologies. Theor. Appl. Genet. 132, 593–605 (2019). (PMID: 10.1007/s00122-018-3261-9)
Yuan, J., Guo, X., Hu, J., Lv, Z. & Han, F. Characterization of two CENH3 genes and their roles in wheat evolution. New Phytol. 206, 839–851 (2015). (PMID: 10.1111/nph.13235)
Karimi-Ashtiyani, R. et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl Acad. Sci. USA 112, 11211–11216 (2015). (PMID: 10.1073/pnas.1504333112)
Maheshwari, S. et al. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet. 11, e1004970 (2015). (PMID: 10.1371/journal.pgen.1004970)
Jin, W. et al. Histone modifications associated with both A and B chromosomes of maize. Chromosome Res. 16, 1203–1214 (2008). (PMID: 10.1007/s10577-008-1269-8)
Deal, R. B. & Henikoff, S. Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 14, 116–122 (2011). (PMID: 10.1016/j.pbi.2010.11.005)
Laurie, D. A. & Bennett, M. D. The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet. 76, 393–397 (1988). (PMID: 10.1007/BF00265339)
Jaqueth, J. S. et al. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 101, 101–111 (2020). (PMID: 10.1111/tpj.14521)
Flood, P. J. et al. Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nat. Plants 6, 13–21 (2020). (PMID: 10.1038/s41477-019-0575-9)
Evans, M. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19, 46–62 (2007). (PMID: 10.1105/tpc.106.047506)
Wright et al. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 20, 429–436 (2001). (PMID: 10.1007/s002990100318)
Gui, H., Liu, Y., Han, K. & Li, X. The relationship between PMI (manA) gene expression and optimal selection pressure in Indica rice transformation. Plant Cell Rep. 33, 1081–1090 (2014). (PMID: 10.1007/s00299-014-1596-5)
Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann. Bot. 98, 679–689 (2006).
Substance Nomenclature:
0 (Histones)
Entry Date(s):
Date Created: 20201110 Date Completed: 20210120 Latest Revision: 20210629
Update Code:
20240105
DOI:
10.1038/s41587-020-0728-4
PMID:
33169035
Czasopismo naukowe
New breeding technologies accelerate germplasm improvement and reduce the cost of goods in seed production 1-3 . Many such technologies could use in vivo paternal haploid induction (HI), which occurs when double fertilization precedes maternal (egg cell) genome loss. Engineering of the essential CENTROMERIC HISTONE (CENH3) gene induces paternal HI in Arabidopsis 4-6 . Despite conservation of CENH3 function across crops, CENH3-based HI has not been successful outside of the Arabidopsis model system 7 . Here we report a commercially operable paternal HI line in wheat with a ~7% HI rate, identified by screening genome-edited TaCENH3α-heteroallelic combinations. Unlike in Arabidopsis, edited alleles exhibited reduced transmission in female gametophytes, and heterozygous genotypes triggered higher HI rates than homozygous combinations. These developments might pave the way for the deployment of CENH3 HI technology in diverse crops.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies