Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Strategies for simultaneous strengthening and toughening via nanoscopic intracrystalline defects in a biogenic ceramic.

Tytuł:
Strategies for simultaneous strengthening and toughening via nanoscopic intracrystalline defects in a biogenic ceramic.
Autorzy:
Deng Z; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA.
Chen H; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA.
Yang T; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA.
Jia Z; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA.
Weaver JC; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA.
Shevchenko PD; Advanced Photon Source, Argonne National Laboratory, 9700S Cass Ave, Lemont, IL, 60439, USA.
De Carlo F; Advanced Photon Source, Argonne National Laboratory, 9700S Cass Ave, Lemont, IL, 60439, USA.
Mirzaeifar R; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA.
Li L; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA. .
Źródło:
Nature communications [Nat Commun] 2020 Nov 10; Vol. 11 (1), pp. 5678. Date of Electronic Publication: 2020 Nov 10.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Biomineralization*
Bivalvia/*metabolism
Calcium Carbonate/*metabolism
Ceramics/*chemistry
Animals ; Computer Simulation ; Models, Biological
References:
J Struct Biol. 2014 Jan;185(1):1-14. (PMID: 24291472)
Nat Mater. 2016 Aug;15(8):903-10. (PMID: 27135858)
J Synchrotron Radiat. 2014 Sep;21(Pt 5):1188-93. (PMID: 25178011)
Biosci Biotechnol Biochem. 2020 Aug;84(8):1529-1540. (PMID: 32434433)
J Struct Biol. 2006 Feb;153(2):145-50. (PMID: 16403651)
Acta Biomater. 2009 Oct;5(8):3038-44. (PMID: 19427933)
Science. 2008 Dec 5;322(5907):1516-20. (PMID: 19056979)
Nat Mater. 2015 Jan;14(1):23-36. (PMID: 25344782)
Adv Mater. 2013 Apr 24;25(16):2344-50. (PMID: 23450806)
Science. 2013 Feb 15;339(6121):773-9. (PMID: 23413348)
Science. 2017 Dec 8;358(6368):1294-1298. (PMID: 29217569)
J Struct Biol. 2010 Apr;170(1):41-9. (PMID: 20064619)
Nat Mater. 2014 May;13(5):501-7. (PMID: 24681646)
J Struct Biol. 2006 Jul;155(1):96-103. (PMID: 16682231)
Chembiochem. 2005 Feb;6(2):304-14. (PMID: 15678422)
Nat Mater. 2011 Sep 04;10(11):890-6. (PMID: 21892179)
Phys Chem Chem Phys. 2015 Aug 21;17(31):20178-84. (PMID: 26177610)
Nat Commun. 2019 Oct 23;10(1):4822. (PMID: 31645557)
Science. 2012 Jun 8;336(6086):1275-80. (PMID: 22679090)
Science. 1969 Nov 28;166(3909):1150-2. (PMID: 17775575)
Science. 2005 Nov 18;310(5751):1144-7. (PMID: 16293751)
Comp Biochem Physiol B Biochem Mol Biol. 2009 Nov;154(3):351-71. (PMID: 19665573)
Faraday Discuss. 2007;136:9-25; discussion 107-23. (PMID: 17955800)
J Struct Biol. 2016 Nov;196(2):244-259. (PMID: 27456365)
Nat Mater. 2014 Dec;13(12):1102-7. (PMID: 25326825)
Science. 1990 Nov 2;250(4981):664-7. (PMID: 17810868)
Adv Mater. 2010 May 11;22(18):2082-6. (PMID: 20544895)
Acta Biomater. 2013 Feb;9(2):5353-9. (PMID: 23036948)
Nano Lett. 2006 Oct;6(10):2301-4. (PMID: 17034101)
Sci Rep. 2013;3:1693. (PMID: 23603788)
J Mater Sci Mater Med. 2000 Jan;11(1):49-60. (PMID: 15348099)
Nat Mater. 2004 Dec;3(12):900-2. (PMID: 15543151)
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3699-704. (PMID: 22343283)
Science. 2019 Jun 28;364(6447):1260-1263. (PMID: 31249053)
Science. 2008 Feb 22;319(5866):1069-73. (PMID: 18292337)
J Mech Behav Biomed Mater. 2012 Nov;15:70-7. (PMID: 23032427)
Science. 1969 Nov 28;166(3909):1147-50. (PMID: 17775574)
Proc Natl Acad Sci U S A. 1985 Jun;82(12):4110-4. (PMID: 3858868)
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042403. (PMID: 25974504)
Substance Nomenclature:
H0G9379FGK (Calcium Carbonate)
Entry Date(s):
Date Created: 20201111 Date Completed: 20201125 Latest Revision: 20231112
Update Code:
20240105
PubMed Central ID:
PMC7655841
DOI:
10.1038/s41467-020-19416-2
PMID:
33173053
Czasopismo naukowe
While many organisms synthesize robust skeletal composites consisting of spatially discrete organic and mineral (ceramic) phases, the intrinsic mechanical properties of the mineral phases are poorly understood. Using the shell of the marine bivalve Atrina rigida as a model system, and through a combination of multiscale structural and mechanical characterization in conjunction with theoretical and computational modeling, we uncover the underlying mechanical roles of a ubiquitous structural motif in biogenic calcite, their nanoscopic intracrystalline defects. These nanoscopic defects not only suppress the soft yielding of pure calcite through the classical precipitation strengthening mechanism, but also enhance energy dissipation through controlled nano- and micro-fracture, where the defects' size, geometry, orientation, and distribution facilitate and guide crack initialization and propagation. These nano- and micro-scale cracks are further confined by larger scale intercrystalline organic interfaces, enabling further improved damage tolerance.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies