Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety.

Tytuł:
Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety.
Autorzy:
Breining P; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Frølund AL; Medical School, Faculty of health, Aarhus University, Aarhus, Denmark.
Højen JF; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
Gunst JD; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
Staerke NB; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
Saedder E; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.
Cases-Thomas M; Senechaem Ltd., Reading, UK.
Little P; Lundbeck Foundation, Copenhagen, Denmark.
Nielsen LP; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.
Søgaard OS; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
Kjolby M; Department of Biomedicine, Aarhus University, Aarhus, Denmark.; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.; University of Dundee, Dundee, Scotland.
Źródło:
Basic & clinical pharmacology & toxicology [Basic Clin Pharmacol Toxicol] 2021 Feb; Vol. 128 (2), pp. 204-212. Date of Electronic Publication: 2020 Nov 22.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: <2005-> : Oxford : Blackwell
Original Publication: Copenhagen, Denmark : Oxford, UK : Nordic Pharmacological Society Distributed by Blackwell Munksgaard, 2004-
MeSH Terms:
COVID-19 Drug Treatment*
Antiviral Agents/*therapeutic use
Esters/*therapeutic use
Guanidines/*therapeutic use
Serine Proteinase Inhibitors/*therapeutic use
Animals ; Antiviral Agents/administration & dosage ; Antiviral Agents/adverse effects ; Drug Repositioning ; Esters/administration & dosage ; Esters/adverse effects ; Guanidines/administration & dosage ; Guanidines/adverse effects ; Humans ; Mice ; Patient Safety ; Serine Endopeptidases/drug effects ; Serine Proteinase Inhibitors/administration & dosage ; Serine Proteinase Inhibitors/adverse effects
References:
Khan S, Siddique R, Shereen MA.et al. Emergence of a Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2: Biology and Therapeutic Options. Journal of Clinical Microbiology. 2020;58 (5):http://dx.doi.org/10.1128/jcm.00187-20.
Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med. 2020;20(2):124-127.
Deslandes A, Berti V, Tandjaoui-Lambotte Y, et al. SARS-CoV-2 was already spreading in France in late December 2019. Int J Antimicrob Agents. 2020;55(6):106006.
WHO. Virtual press conference on COVID-19 - 11 March 2020. Secondary Virtual press conference on COVID-19 - 11 March 2020 11 March 2020. https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-press-conference-full-and-final-11mar2020.pdf?sfvrsn=cb432bb3_2.
Fan E, Beitler JR, Brochard L, et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respiratory Med. 2020;8(8):816-821.
Horby P, Lim WS, Emberson Dexamethasone in hospitalized patients with Covid-19-preliminary report. N Engl J Med. 2020. http://dx.doi.org/10.1056/NEJMoa2021436.
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 - Final Report. New England Journal of Medicine. 2020;383 (19):1813-1826. http://dx.doi.org/10.1056/nejmoa2007764.
Pan H, Peto R, Karim QA, et al. Repurposed antiviral drugs for COVID-19; interim WHO SOLIDARITY trial results. medRxiv 2020.
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454.
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020;63(3):457-460.
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020;117(21):11727-11734.
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8.
CAMOSTAT MESYLATE. Secondary CAMOSTAT MESYLATE 2020. https://drugs.ncats.io/drug/451M50A1EQ.
Ohkoshi M, Oka T. Clinical experience with a protease inhibitor [N,N-dimethylcarbamoylmethyl 4-(4-guanidinobenzoyloxy)-phenylacetate] methanesulfate for prevention of recurrence of carcinoma of the mouth and in treatment of terminal carcinoma. J. Maxillofacial Surg. 1984;12(4):148-152.
Friess H, Kleeff J, Isenmann R, Malfertheiner P, Büchler MW. Adaptation of the human pancreas to inhibition of luminal proteolytic activity. Gastroenterology. 1998;115(2):388-396.
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433.
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514-523.
Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372.
Li F. Structure, function, and evolution of coronavirus spike proteins. Annual Rev. Virol. 2016;3(1):237-261.
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273.
Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26:681-687.
Hamming I, Timens W, Bulthuis M, Lely A, Gv N, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203(2):631-637.
Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567.
Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica. 2020;35(3):266-271.
Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance. 2020;3(9):e202000786.
Hoffmann M, Hofmann-Winkler H, Smith JC, et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. bioRxiv 2020.
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-292.e6.
Pillay TS. Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J Clin Pathol. 2020;73(7):366-369.
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607-613.
Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015;116:76-84.
Shirato K, Kawase M, Matsuyama S. Middle east respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87(23):12552-12561.
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 2012;86(12):6537-6545.
Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci. 2005;102(35):12543-12547.
Lee MG, Kim KH, Park KY, Kim JS. Evaluation of anti-influenza effects of camostat in mice infected with non-adapted human influenza viruses. Adv Virol. 1996;141(10):1979-1989.
Yamaya M, Shimotai Y, Hatachi Y, et al. The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells. Pulm Pharmacol Ther. 2015;33:66-74.
Walls AC, Tortorici MA, Bosch B-J, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114-117.
Midgley I, Hood AJ, Proctor P, et al. Metabolic fate of 14C-camostat mesylate in man, rat and dog after intravenous administration. Xenobiotica. 1994;24(1):79-92.
Spraggon G, Hornsby M, Shipway A, et al. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations. Protein Sci. 2009;18(5):1081-1094.
Hempel T, Raich L, Olsson S, et al. Molecular mechanism of SARS-CoV-2 cell entry inhibition via TMPRSS2 by Camostat and Nafamostat mesylate. bioRxiv 2020:2020.07.21.214098 https://doi.org/10.1101/2020.07.21.214098 [published Online First: Epub Date].
Depfenhart M, de Villiers D, Lemperle G, Meyer M, Di Somma S. Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy? Intern Emerg Med. 2020;15(5):801-812.
Sonawane K, Barale SS, Dhanavade MJ, et al. Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2. 2020. ChemRxiv.https://chemrxiv.org/articles/preprint/Homology_Modeling_and_Docking_Studies_of_TMPRSS2_with_Experimentally_Known_Inhibitors_Camostat_Mesylate_Nafamostat_and_Bromhexine_Hydrochloride_to_Control_SARS-Coronavirus-2/12162360.
Sun W, Zhang X, Cummings MD, et al. Targeting enteropeptidase with reversible covalent inhibitors to achieve metabolic benefits. Journal of Pharmacology and Experimental Therapeutics. 2020;JPET-AR. http://dx.doi.org/10.1124/jpet.120.000219.
Peiris JSM, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767-1772.
Lescure FX, Bouadma L, Nguyen D, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis. 2020;20(6):697-706.
He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 2006;210(3):288-297.
Zhao X, Nicholls JM, Chen Y-G. Severe Acute Respiratory Syndrome-associated Coronavirus Nucleocapsid Protein Interacts with Smad3 and Modulates Transforming Growth Factor-β Signaling. Journal of Biological Chemistry. 2008;283 (6):3272-3280. http://dx.doi.org/10.1074/jbc.m708033200.
Ferreira-Gomes M, Kruglov A, Durek P,. et al. In severe COVID-19, SARS-CoV-2 induces a chronic, TGF-β-dominated adaptive immune response. medRxiv 2020.
Chen W. A potential treatment of COVID-19 with TGF-β blockade. Int J Biol Sci. 2020;16(11):1954.
Okuno M, Akita K, Moriwaki H, et al. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-β. Gastroenterology. 2001;120(7):1784-1800.
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659-661.
Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875-894.
Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38(4):471-482.
Prussia A, Thepchatri P, Snyder JP, Plemper RK. Systematic approaches towards the development of host-directed antiviral therapeutics. Int J Mol Sci. 2011;12(6):4027-4052.
Liu Y, Liao W, Wan L, Xiang T, Zhang W. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19. Viral Immunology. 2020;http://dx.doi.org/10.1089/vim.2020.0062.
Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;63(3):364-374.
Yu F, Yan L, Wang N, et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin Infect Dis. 2020;71(15):793-798.
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat Mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother. 2020;64:e00754-20.
Hofmann-Winkler H, Moerer O, Alt-Epping S, et al. Camostat Mesylate May Reduce Severity of Coronavirus Disease 2019 Sepsis: A First Observation. Critical Care Explorations. 2020;2 (11):e0284http://dx.doi.org/10.1097/cce.0000000000000284.
Nakao A, Iwagaki H, Notohara K, et al. Successful resection of rectal carcinoma in an Evans' syndrome patient followed by predonisolone and high-dose immunoglobulin: report of a case. Acta Med Okayama. 2001;55(4):253-257.
Senda S, Fujiyama Y, Bamba T, Hosoda S. Treatment of ulcerative colitis with camostat mesilate, a serine protease inhibitor. Intern Med. 1993;32(4):350-354.
Sai JK, Suyama M, Kubokawa Y, Matsumura Y, Inami K, Watanabe S. Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease. J Gastroenterol. 2010;45(3):335-341.
Ikeda Y, Ito H, Hashimoto K. Effect of camostat mesilate on urinary protein excretion in three patients with advanced diabetic nephropathy. J Diabetes Comp. 1999;13(1):56-58.
Onbe T, Makino H, Kumagai I, Haramoto T, Murakami K, Ota Z. Effect of proteinase inhibitor Camostat Mesilate on nephrotic syndrome with diabetic nephropathy. J. Diabetic Compl. 1991;5(2-3):167-168.
Matsubara M, Taguma Y, Saito T, Yoshinaga K. Anti-proteinuric and anti-coagulatory effects of camostat mesilate in azotemic diabetics. Nihon Jinzo Gakkai Shi. 1992;34(4):411-416.
Matsubara M, Taguma Y, Kurosawa K, Hotta O, Suzuki K, Futaki G. Effect of camostat mesilate on heavy proteinuria in various nephropathies. Clin Nephrol. 1989;32(3):119-123.
Asami T, Tomisawa S, Uchiyama M. Effect of oral camostat mesilate on hematuria and/or proteinuria in children. Pediatric Nephrol. 2004;19(3):313-316.
Sugiyama M, Atomi Y, Wada N, Kuroda A, Muto T. Effect of oral protease inhibitor administration on gallbladder motility in patients with mild chronic pancreatitis. J Gastroenterol. 1997;32(3):374-379.
Kono K, Takahashi A, Sugai H, et al. Oral trypsin inhibitor can improve reflux esophagitis after distal gastrectomy concomitant with decreased trypsin activity. Am J Surg. 2005;190(3):412-417.
Ashizawa N, Hashimoto T, Miyake T, Shizuku T, Imaoka T, Kinoshita Y. Efficacy of camostat mesilate compared with famotidine for treatment of functional dyspepsia: Is camostat mesilate effective? J Gastroenterol Hepatol. 2006;21(4):767-771.
Yamamoto M, Kiso M, Sakai-Tagawa Y, et al. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses. 2020;12(6):629.
Yamamoto M, Matsuyama S, Li X, et al. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother. 2016;60(11):6532-6539.
Grant Information:
Lundbeckfonden
Contributed Indexing:
Keywords: Antiviral drugs < Viral infections; Camostat mesylate; Infection < Immunotoxicology; Lung; drug repurposing; pulmonary or respiratory system < Respiratory toxicology; tmprss2
Substance Nomenclature:
0 (Antiviral Agents)
0 (Esters)
0 (Guanidines)
0 (Serine Proteinase Inhibitors)
0FD207WKDU (camostat)
EC 3.4.21.- (Serine Endopeptidases)
EC 3.4.21.- (TMPRSS2 protein, human)
Entry Date(s):
Date Created: 20201111 Date Completed: 20210121 Latest Revision: 20221207
Update Code:
20240105
DOI:
10.1111/bcpt.13533
PMID:
33176395
Czasopismo naukowe
The coronavirus responsible for COVID-19, SARS-CoV-2, utilizes a viral membrane spike protein for host cell entry. For the virus to engage in host membrane fusion, SARS-CoV-2 utilizes the human transmembrane surface protease, TMPRSS2, to cleave and activate the spike protein. Camostat mesylate, an orally available well-known serine protease inhibitor, is a potent inhibitor of TMPRSS2 and has been hypothesized as a potential antiviral drug against COVID-19. In vitro human cell and animal studies have shown that camostat mesylate inhibits virus-cell membrane fusion and hence viral replication. In mice, camostat mesylate treatment during acute infection with influenza, also dependent on TMPRSS2, leads to a reduced viral load. The decreased viral load may be associated with an improved patient outcome. Because camostat mesylate is administered as an oral drug, it may be used in outpatients as well as inpatients at all disease stages of SARS-CoV-2 infection if it is shown to be an effective antiviral agent. Clinical trials are currently ongoing to test whether this well-known drug could be repurposed and utilized to combat the current pandemic. In the following, we will review current knowledge on camostat mesylate mode of action, potential benefits as an antiviral agent and ongoing clinical trials.
(© 2020 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies