Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Caspase-7 deficiency in Chinese hamster ovary cells reduces cell proliferation and viability.

Tytuł:
Caspase-7 deficiency in Chinese hamster ovary cells reduces cell proliferation and viability.
Autorzy:
Safari F; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Farajnia S; Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave., Tabriz, Iran. .; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .
Behzad Behbahani A; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Zarredar H; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Barekati-Mowahed M; Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Dehghani H; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Źródło:
Biological research [Biol Res] 2020 Nov 13; Vol. 53 (1), pp. 52. Date of Electronic Publication: 2020 Nov 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2014- : London : Biomed Central, Ltd
Original Publication: Santiago : Society of Biology of Chile, [1992-
MeSH Terms:
Apoptosis*
Cell Proliferation*
Cell Survival*
Caspase 7/*deficiency
Animals ; CHO Cells ; Caspase 7/genetics ; Cricetinae ; Cricetulus
References:
J Biotechnol. 2008 Feb 29;133(4):461-8. (PMID: 18164778)
J Hum Genet. 2018 Feb;63(2):157-164. (PMID: 29215090)
Cell Death Dis. 2014 Aug 14;5:e1366. (PMID: 25118926)
PLoS One. 2015 Jun 29;10(6):e0131411. (PMID: 26121671)
J Cell Biol. 2000 May 1;149(3):623-34. (PMID: 10791976)
Biotechnol Bioeng. 2018 Jun;115(6):1531-1541. (PMID: 29427449)
Cold Spring Harb Perspect Biol. 2020 Jun 1;12(6):. (PMID: 31727679)
Crit Rev Biotechnol. 2020 Mar;40(2):119-137. (PMID: 31793351)
Biotechnol Bioeng. 2018 May;115(5):1331-1339. (PMID: 29337363)
Nature. 2002 Oct 10;419(6907):634-7. (PMID: 12374983)
Biotechnol Bioeng. 2018 Jun;115(6):1509-1520. (PMID: 29427454)
Artif Cells Nanomed Biotechnol. 2016 Sep;44(6):1561-8. (PMID: 26232080)
Biotechnol Bioeng. 2002 Apr 20;78(2):217-28. (PMID: 11870612)
Adv Pharm Bull. 2017 Dec;7(4):603-609. (PMID: 29399550)
J Biotechnol. 2009 Jan 1;139(1):89-94. (PMID: 18983878)
Curr Gene Ther. 2011 Feb;11(1):11-27. (PMID: 21182466)
J Biotechnol. 2009 Dec;144(4):299-303. (PMID: 19799944)
Sci Rep. 2014 Jun 23;4:5400. (PMID: 24954249)
Immunopharmacol Immunotoxicol. 2018 Jun;40(3):201-211. (PMID: 29473438)
ACS Synth Biol. 2016 Nov 18;5(11):1211-1219. (PMID: 26854539)
Biotechnol Bioeng. 2003 Feb 5;81(3):329-40. (PMID: 12474256)
J Biol Chem. 2008 Sep 12;283(37):25485-91. (PMID: 18550533)
Biotechnol J. 2015 Sep;10(9):1446-56. (PMID: 25864574)
Nat Rev Genet. 2010 Sep;11(9):636-46. (PMID: 20717154)
Biol Proced Online. 2018 Nov 1;20:21. (PMID: 30410426)
Theriogenology. 2018 Oct 1;119:282-288. (PMID: 30075414)
Lipids Health Dis. 2017 Nov 2;16(1):208. (PMID: 29096636)
Metab Eng. 2005 Sep-Nov;7(5-6):457-66. (PMID: 16169764)
Biotechnol J. 2015 Jul;10(7):979-94. (PMID: 26058577)
Biochim Biophys Acta. 2013 Jan;1830(1):2204-13. (PMID: 23085068)
J Cell Biochem. 2019 Jun;120(6):10670-10677. (PMID: 30656741)
Cell Biosci. 2019 May 9;9:36. (PMID: 31086658)
Metab Eng. 2007 Sep-Nov;9(5-6):406-18. (PMID: 17658284)
Oncogene. 2001 May 24;20(23):2918-26. (PMID: 11420704)
Science. 2006 Feb 10;311(5762):847-51. (PMID: 16469926)
Biotechnol Bioeng. 2017 Aug;114(8):1779-1790. (PMID: 28409820)
J Biosci Bioeng. 2018 May;125(5):599-605. (PMID: 29295784)
Cytotechnology. 2015 Mar;67(2):223-35. (PMID: 24468831)
PLoS One. 2011 Mar 30;6(3):e18449. (PMID: 21479177)
Anal Biochem. 2018 Oct 1;558:19-27. (PMID: 30075102)
Biotechnol Bioeng. 2006 Oct 20;95(3):350-61. (PMID: 16894638)
EMBO J. 1996 Dec 16;15(24):6969-78. (PMID: 9003773)
Sci Rep. 2018 Nov 5;8(1):16363. (PMID: 30397244)
Cytotechnology. 2010 Jul;62(3):175-88. (PMID: 20502964)
Nat Biotechnol. 2014 Oct;32(10):992-1000. (PMID: 25299917)
Biotechnol Bioeng. 2020 Apr;117(4):1187-1203. (PMID: 31930480)
Curr Pharm Biotechnol. 2017;18(13):1038-1054. (PMID: 29424307)
Biotechnol Bioeng. 2010 Feb 1;105(2):330-40. (PMID: 19777580)
Biotechnol Bioeng. 2019 Jul;116(7):1813-1819. (PMID: 30883679)
Cell Mol Neurobiol. 2020 May;40(4):477-493. (PMID: 31773362)
Metab Eng. 2007 Sep-Nov;9(5-6):452-64. (PMID: 17892962)
Nature. 2016 Dec 1;540(7631):144-149. (PMID: 27851729)
Contributed Indexing:
Keywords: Apoptosis; CHO cells; CRISPR-associated protein 9; Caspase 7; Cell proliferatio
Substance Nomenclature:
EC 3.4.22.- (Caspase 7)
Entry Date(s):
Date Created: 20201114 Date Completed: 20201229 Latest Revision: 20201229
Update Code:
20240105
PubMed Central ID:
PMC7666471
DOI:
10.1186/s40659-020-00319-x
PMID:
33187557
Czasopismo naukowe
Background: Chinese hamster ovary (CHO) cells are the most commonly used mammalian host cell in the commercial-scale production of biopharmaceutical proteins. Modification of genes involved in apoptosis may improve the productivity of CHO cells. Executive caspases, including caspases 3 and 7, play critical roles in apoptosis. The effects of the ablation of the caspase 7 gene on proliferation and viability of CHO cells remains unknown. In this study, we applied clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) to target caspase 7 gene of CHO K1 cell via all in one and homology targeted integration strategies. Consequently, the effect of caspase 7 deficiency on cell proliferation, viability, and apoptosis was studied by MTT assay and flow cytometry.
Results: Findings of gel electrophoresis, western blotting, and sequencing confirmed the caspase 7 gene silencing in CHO cells (CHO-KO). Proliferation assay revealed that caspase 7 deficiency in CHO cells resulted in the reduction of proliferation in various CHO-KO clones. Besides, the disruption of caspase 7 had negative effects on cell viability in exposure with NaBu which confirmed by MTT assay. Results of flow cytometry using Anexin V/PI demonstrated that Nabu treatment (11 mM) declined the percentage of live CHO-K1 and CHO-KO cells to 70.3% and 5.79%. These results verified that the CHO-K1 cells were more resistant to apoptosis than CHO-KO, however most of CHO-KO cells undergone early apoptosis (91.9%) which seems to be a fascinating finding.
Conclusion: These results reveal that caspase 7 may be involved in the cell cycle progression of CHO cells. Furthermore, it seems that targeting caspase 7 is not the ideal route as it had previously been imagined within the prevention of apoptosis but the relation between caspase 7 deficiency, cell cycle arrest, and the occurrence of early apoptosis will require more investigation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies