Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review.

Tytuł:
Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review.
Autorzy:
Tripathi RKP; Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.; Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
Ayyannan SR; Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
Źródło:
Chemical biology & drug design [Chem Biol Drug Des] 2021 Mar; Vol. 97 (3), pp. 721-773. Date of Electronic Publication: 2020 Nov 27.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Original Publication: Oxford : Wiley-Blackwell, 2006-
MeSH Terms:
Enzyme Inhibitors/*chemistry
Protein Tyrosine Phosphatase, Non-Receptor Type 11/*metabolism
Allosteric Site ; Apoptosis/drug effects ; Cytokines/metabolism ; Enzyme Inhibitors/metabolism ; Enzyme Inhibitors/pharmacology ; Humans ; Molecular Docking Simulation ; Neoplasms/metabolism ; Neoplasms/pathology ; Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors ; Signal Transduction/drug effects ; Structure-Activity Relationship
References:
Aceto, N., Sausgruber, N., Brinkhaus, H., Gaidatzis, D., Martiny-Baron, G., Mazzarol, G., Confalonieri, S., Quarto, M., Hu, G., Balwierz, P. J., Pachkov, M., Elledge, S. J., van Nimwegen, E., Stadler, M. B., & Bentires-Alj, M. (2012). Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signalling loop. Nature Medicine, 18(4), 529-537. https://doi.org/10.1038/nm.2645.
Alpay, M., Yurdakok-Dikmen, B., Kismali, G., & Sel, T. (2016). Antileukemic effects of piperlongumine and alpha lipoic acid combination on Jurkat, MEC1 and NB4 cells in vitro. Journal of Cancer Research and Therapeutics, 12(2), 556-560. https://doi.org/10.4103/0973-1482.151936.
Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, D. G., Iversen, L. F., Olsen, O. H., Jansen, P. G., Andersen, H. S., Tonks, N. K., & Moller, N. P. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, 21(21), 7117-7136. https://doi.org/10.1128/MCB.21.21.7117-7136.2001.
Aoki, Y., Huang, Z., Thomas, S. S., Bhide, P. G., Huang, I., Moskowitz, M. A., & Reeves, S. A. (2000). Increased susceptibility to ischemia-induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. The FASEB Journal, 14(13), 1965-1973. https://doi.org/10.1096/fj.00-0105com.
Araki, T., Mohi, M. G., Ismat, F. A., Bronson, R. T., Williams, I. R., Kutok, J. L., Yang, W., Pao, L. I., Gilliland, D. G., Epstein, J. A., & Neel, B. G. (2004). Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nature Medicine, 10(8), 849-857. https://doi.org/10.1038/nm1084.
Bae, I. H., Choi, J. K., Chough, C., Keum, S. J., Keum, S. J., Kim, H., Jang, S. K., & Kim, B. M. (2014). Potent hepatitis C virus NS5A inhibitors containing a benzidine core. ACS Medicinal Chemistry Letters, 5(3), 255-258. https://doi.org/10.1021/ml4003293.
Bagdanoff, J. T., Chen, Z., Acker, M. G., Chen, Y. N., Chan, H., Dore, M., Firestone, B., Fodor, M., Fortanet, J., Hentemann, M., Kato, M., Koenig, R., LaBonte, L. R., Liu, S., Mohseni, M., Ntaganda, R., Sarver, P., Smith, T., Sendzik, M., … LaMarche, M. J. (2019). Optimization of fused-bicyclic allosteric SHP2 inhibitors. Journal of Medicinal Chemistry, 62(4), 1781-1792. https://doi.org/10.1021/acs.jmedchem.8b01725.
Bagdanoff, J. T., Chen, Z., Dore, M., Fortanet, J. G., Kato, M., LaMarche, M. J., Sarver, P. J., Shultz, M., Smith, T. D., & Williams, S. (2016). Compounds and compositions for inhibiting the activity of SHP2. WO16203404, June 15, 2016 [Novartis SHP2 patent applications].
Bardhan, M., Chowdhurry, J., & Ganguly, T. (2011). Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: Steady state/time resolved spectroscopic and docking studies. Journal of Photochemistry and Photobiology B: Biology, 102(1), 11-19. https://doi.org/10.1016/j.jphotobiol.2010.08.011.
Barford, D., Flint, A. J., & Tonks, N. K. (1994). Crystal structure of human protein tyrosine phosphatase 1B. Science, 263(5152), 1397-1404. https://doi.org/10.1126/science.8128219.
Barford, D., & Neel, B. G. (1998). Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 6(3), 249-254. https://doi.org/10.1016/s0969-2126(98)00027-6.
Barr, A. J. (2010). Protein tyrosine phosphatases as drug targets: Strategies and challenges of inhibitor development. Future Medicinal Chemistry, 2(10), 1563-1576. https://doi.org/10.4155/fmc.10.241.
Bennett, A. M., Tang, T. L., Sugimoto, S., Walsh, C. T., & Neel, B. G. (1994). Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proceedings of the National Academy of Sciences of the United States of America, 91(15), 7335-7339. https://doi.org/10.1073/pnas.91.15.7335.
Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., Maris, J. M., Richardson, A., Bardelli, A., Sugarbaker, D. J., Richards, W. G., Du, J., Girard, L., Minna, J. D., Loh, M. L., Fisher, D. E., Velculescu, V. E., Vogelstein, B., Meyerson, M., … Neel, B. G. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64(24), 8816-8820. https://doi.org/10.1158/0008-5472.CAN-04-1923.
Benveniste, E. N., Liu, Y., McFarland, B. C., & Qin, H. (2014). Involvement of the janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. Journal of Interferon & Cytokine Research, 34(8), 577-588. https://doi.org/10.1089/jir.2014.0012.
Berezovsky, I. N. (2013). Thermodynamics of allostery paves a way to allosteric drugs. Biochimica Et Biophysica Acta, 1834(5), 830-835. https://doi.org/10.1016/j.bbapap.2013.01.024.
Bilwes, A. M., den Hertog, J., Hunter, T., & Noel, J. P. (1996). Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization. Nature, 382(6591), 555-559. https://doi.org/10.1038/382555a0.
Bingham, P. M., Stuart, S. D., & Zachar, Z. (2014). Lipoic acid and lipoic acid analogs in cancer metabolism and chemotherapy. Expert Review of Clinical Pharmacology, 7(6), 837-846. https://doi.org/10.1586/17512433.2014.966816.
Bonetti, D., Troilo, F., Toto, A., Travaglini-Allocatelli, C., Brunori, M., & Gianni, S. (2018). The mechanism of folding and binding of the N-terminal SH2 domain from SHP2. The Journal of Physical Chemistry B, 122(49), 11108-11114. https://doi.org/10.1021/acs.jpcb.8b05651.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. https://doi.org/10.3322/caac.21492.
Bunda, S., Burrell, K., Heir, P., Zeng, L., Alamsahebpour, A., Kano, Y., Raught, B., Zhang, Z.-Y., Zadeh, G., & Ohh, M. (2015). Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nature Communications, 6, 8859. https://doi.org/10.1038/ncomms9859.
Buonato, J. M., Lan, I. S., & Lazzara, M. J. (2015). EGF augments TGF β -induced epithelial-mesenchymal transition by promoting SHP2 binding to GAB1. Journal of Cell Science, 128(21), 3898-3909. https://doi.org/10.1242/jcs.169599.
Butterworth, S., Overduin, M., & Barr, A. J. (2014). Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Medicinal Chemistry, 6(12), 1423-1437. https://doi.org/10.4155/fmc.14.88.
Cai, P., Guo, W., Yuan, H. Q., Li, Q., Wang, W., Sun, Y., Li, X., & Gu, Y. (2014). Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer. Biomedicine & Pharmacotherapy, 68(3), 285-290. https://doi.org/10.1016/j.biopha.2013.10.012.
Chan, G., Kalaitzidis, D., & Neel, B. G. (2008). The tyrosine phosphatase SHP2 (PTPN11) in cancer. Cancer and Metastasis Reviews, 27(2), 179-192. https://doi.org/10.1007/s10555-008-9126-y.
Chan, R. J., & Feng, G. S. (2007). PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, 109(3), 862-867. https://doi.org/10.1182/blood-2006-07-028829.
Chan, R. J., Leedy, M. B., Munugalavadla, V., Voorhorst, C. S., Li, Y., Yu, M., & Kapur, R. (2005). Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood, 105(9), 3737-3742. https://doi.org/10.1182/blood-2004-10-4002.
Chen, C., Cao, M., Zhu, S., Wang, C., Liang, F., Yan, L., & Luo, D. (2015). Discovery of a novel inhibitor of the protein tyrosine phosphatase SHP2. Scientific Reports, 5, 17626. https://doi.org/10.1038/srep17626.
Chen, C. H., Chen, Z., Dore, M., Fortanet, J. G., Karki, R., Kato, M., LaMarche, M. J., Perez, L. B., Smith, T., Williams, S., Toure, B. B., & Sendzik, M. (2015). N-azaspirocycloalkane substituted N-heteroaryl compounds and compositions for inhibiting the activity of SHP2. WO15107495, January 16, 2015 [Novartis SHP2 patent applications].
Chen, C., Liang, F., Chen, B., Sun, Z., Xue, T., Yang, R., & Luo, D. (2017). Identification of Demethylincisterol A3 as a selective inhibitor of protein tyrosine phosphatase Shp2. European Journal of Pharmacology, 795, 124-133. https://doi.org/10.1016/j.ejphar.2016.12.012.
Chen, J., Yu, W. M., Daino, H., Broxmeyer, H. E., Druker, B. J., & Qu, C.-K. (2007). SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl. Blood, 109(2), 778-785. https://doi.org/10.1182/blood-2006-04-019141.
Chen, L., Sung, S.-S., Yip, M. L. R., Lawrence, H. R., Ren, Y., Guida, W. C., Sebti, S. M., Lawrence, N. J., & Wu, J. (2006). Discovery of a novel SHP2 protein tyrosine phosphatase inhibitor. Molecular Pharmacology, 70(2), 562-570. https://doi.org/10.1124/mol.106.025536.
Chen, M.-J., Wang, Y.-C., Wue, D.-W., Chen, C.-Y., & Lee, H. (2019). Association of nuclear localization of SHP2 and YAP1 with unfavorable prognosis in non-small cell lung cancer. Pathology - Research and Practice, 215(4), 801-806. https://doi.org/10.1016/j.prp.2019.01.027.
Chen, X., Zou, F., Hu, Z., Du, G., Yu, P., Wang, W., Wang, H., Ye, L., & Tian, J. (2020). PCC0208023, a potent SHP2 allosteric inhibitor, imparts an antitumor effect against KRAS mutant colorectal cancer. Toxicology and Applied Pharmacology, 398, 115019. https://doi.org/10.1016/j.taap.2020.115019.
Chen, Y. P., LaMarche, M. J., Chan, H. M., Fekkes, P., Garcia-Fortanet, J., Acker, M. G., Antonakos, B., Chen, C. H., Chen, Z., Cooke, V. G., Dobson, J. R., Deng, Z., Fei, F., Firestone, B., Fodor, M., Fridrich, C., Gao, H., Grunenfelder, D., Hao, H. X., … Fortin, P. D. (2016). Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 535(7610), 148-152. https://doi.org/10.1038/nature18621.
Chen, Z., Dore, M., Fortanet, J. G., Karki, R., Kato, M., LaMarche, M. J., Perez, L. B., Williams, S., & Sendzik, M. (2015). 1-(Triazin-3-yl/pyridazin-3-yl)-piper(-azine)idine derivatives and compositions for inhibiting the activity of SHP2. WO15107494, January 16, 2015 [Novartis SHP2 patent applications].
Chen, Z., Fortanet, J. G., Grunenfelder, D., Karki, R., Kato, M., LaMarche, M. J., Perez, L. B., Stams, T. M., & Williams, S. (2015). 1 -Pyridazin-/triazin-3-ylpiperazine)/idine/pyrolidine derivatives and compositions thereof for inhibiting the activity of SHP2. WO15107493, January 16, 2015 [Novartis SHP2 patent applications].
Chen, Z., Fortanet, J. G., Jouk, A., Karki, R., LaMarche, M. J., Liu, G., Palermo, M., Perez, L. B., Sarver, P. J., Shultz, M. D., Sendzik, M., Toure, B. B., & Yu, B. (2016). Compounds and compositions for inhibiting the activity of SHP2. WO16203406, June 15, 2016 [Novartis SHP2 patent applications].
Chen, Z., Fortanet, J. G., Karki, R., LaMarche, M. J., Majumdar, D., Perez, L. B., Sendzik, M., Smith, T. D., Yang, F., & Yu, B. (2017). Compounds and compositions for inhibiting the activity of SHP2. WO17216706, June 12, 2017 [Novartis SHP2 patent applications].
Chen, Z., Fortanet, J. G., LaMarche, M. J., Sendzik, M., Tamez, V., & Yu, B. (2016). Compounds and compositions for inhibiting the activity of SHP2. WO16203405, June 15, 2016 [Novartis SHP2 patent applications].
Chio, C. M., Lim, C. S., & Bishop, A. C. (2015). Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry, 54(2), 497-504. https://doi.org/10.1021/bi5013595.
Chio, C. M., Yu, X., & Bishop, A. C. (2015). Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases. Bioorganic & Medicinal Chemistry, 23(12), 2828-2838. https://doi.org/10.1016/j.bmc.2015.03.027.
Chung, T. D., Yu, J. J., Kong, T. A., Spiotto, M. T., & Lin, J. M. (2000). Interleukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate, 42(1), 1-7. https://doi.org/10.1002/(sici)1097-0045(20000101)42:1<1:aid-pros1>3.0.co;2-y.
Corte, C. M. D., Gay, C. M., Byers, L. A., & Morgillo, F. (2019). ILK and SHP2 expression identify a poor prognostic cohort of EGFR-mutant lung cancer. EBioMedicine, 39, 5-6. https://doi.org/10.1016/j.ebiom.2018.12.008.
Cunnick, J. M., Mei, L., Doupnik, C. A., & Wu, J. (2001). Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2. Journal of Biological Chemistry, 276(26), 24380-24387. https://doi.org/10.1074/jbc.M010275200.
Damnajanovic, I., Kocic, G., Najman, S., Stojanovic, S., Veljkovic, A., Conic, I., Langerholc, T., & Pesic, S. (2014). Chemopreventive potential of alpha lipoic acid in the treatment of colon and cervix cancer cell lines. Bratislava Medical Journal, 115(10), 611-616. https://doi.org/10.4149/bll_2014_118.
Dardaei, L., Wang, H. Q., Singh, M., Fordjour, P., Shaw, K. X., Yoda, S., Kerr, G., Yu, K., Liang, J., Cao, Y., Chen, Y., Lawrence, M. S., Langenbucher, A., Gainor, J. F., Friboulet, L., Dagogo-Jack, I., Myers, D. T., Labrot, E., Ruddy, D., … Engelman, J. A. (2018). SHP2 inhibition restores sensitivity to ALK inhibitors in resistant ALK-rearranged non-small cell lung cancer. Nature Medicine, 24(4), 512-517. https://doi.org/10.1038/nm.4497.
Darian, E., Guvench, O., Yu, B., Qu, C.-K., & MacKerell, A. D. Jr (2011). Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Proteins, 79(5), 1573-1588. https://doi.org/10.1002/prot.22984.
Davis, D. C., Hoch, D. G., Wu, L., Abegg, D., Martin, B. S., Zhang, Z.-Y., Adibekian, A., & Dai, M. (2018). Total Synthesis, Biological Evaluation, and Target Identification of Rare Abies Sesquiterpenoids. Journal of the American Chemical Society, 140(50), 17465-17473. https://doi.org/10.1021/jacs.8b07652.
Dempke, W. C. M., Uciechowski, P., Fenchel, K., & Chevassut, T. (2018). Targeting SHP-1, 2 and SHIP pathways: A novel strategy for cancer treatment? Oncology, 95(5), 257-269. https://doi.org/10.1159/000490106.
Desideri, I., Francolini, G., Becherini, C., Terziani, F., Paoli, C. D., Olmetto, E., Loi, M., Perna, M., Meattini, I., Scotti, V., Greto, D., Bonomo, P., Sulprizio, S., & Livi, L. (2017). Use of an alpha lipoic, methylsulfonylmethane and bromelain dietary supplement (Opera®) for chemotherapy-induced peripheral neuropathy management, a prospective study. Medical Oncology, 34(3), 46. https://doi.org/10.1007/s12032-017-0907-4.
Digilio, M. C., Conti, E., Sarkozy, A., Mingarelli, R., Dottorini, T., Marino, B., Pizzuti, A., & Dallapiccola, D. (2002). Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. The American Journal of Human Genetics, 71(2), 389-394. https://doi.org/10.1086/341528.
Dinda, S., Kodali-Gali, S., Sevilla, L., Burkley, M., Hurd, C., & Moudgil, V. K. (1997). Inhibition of proliferation of T47D human breast cancer cells: Alterations in progesterone receptor and p53 tumor suppressor protein. Molecular and Cellular Biochemistry, 175(1-2), 81-89. https://doi.org/10.1023/a:1006841413053.
Ding, H., Zhang, Y., Xu, C., Hou, D., Li, J., Zhang, Y., Peng, W., Zen, K., Zhang, C.-Y., & Jiang, X. (2014). Norathyriol reverses obesity- and high-fat-diet-induced insulin resistance in mice through inhibition of PTP1B. Diabetologia, 57(10), 2145-2154. https://doi.org/10.1007/s00125-014-3315-8.
Farrokhzadeh, A., Akher, F. B., & Soliman, M. E. S. (2019). Probing the dynamic mechanism of uncommon allosteric inhibitors optimized to enhance drug selectivity of shp2 with therapeutic potential for cancer treatment. Applied Biochemistry and Biotechnology, 188(1), 260-281. https://doi.org/10.1007/s12010-018-2914-0.
Fedele, C., Ran, H., Diskin, B., Wei, W., Jen, J., Geer, M. J., Araki, K., Ozerdem, U., Simeone, D. M., Miller, G., Neel, B. G., & Tang, K. H. (2018). SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discovery, 8(10), 1237-1249. https://doi.org/10.1158/2159-8290.CD-18-0444.
Feng, G. S. (1999). Shp-2 tyrosine phosphatase: Signaling one cell or many. Experimental Cell Research, 253(1), 47-54. https://doi.org/10.1006/excr.1999.4668.
Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Pineros, M., Znaor, A., & Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(8), 1941-1953. https://doi.org/10.1002/ijc.31937.
Feuerecker, B., Pirsig, S., Seidl, C., Aichler, M., Feuchtinger, A., Bruchelt, G., & Senekowitsch-Schmidtke, R. (2012). Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo. Cancer Biology & Therapy, 13(14), 1425-1435. https://doi.org/10.4161/cbt.22003.
Fodor, M., Price, E., Wang, P., Lu, H., Argintaru, A., Chen, Z., Glick, M., Hao, H.-X., Kato, M., Koenig, R., LaRochelle, J. R., Liu, G., McNeill, E., Majumdar, D., Nishiguchi, G. A., Perez, L. B., Paris, G., Quinn, C. M., Ramsey, T., … LaMarche, M. J. (2018). Dual allosteric inhibition of SHP2 phosphatase. ACS Chemical Biology, 13(3), 647-656. https://doi.org/10.1021/acschembio.7b00980.
Fraifeld, V., Seidman, R., Sagi, O., Muradian, K., & Wolfson, M. (2001). Aurintricarboxylic acid decreases proliferative potential of SKOV3 and MCF-7 human carcinoma cells. Anticancer Research, 21(3B), 1975-1978.
Frankson, R., Yu, Z.-H., Bai, Y., Li, Q., Zhang, R.-Y., & Zhang, Z.-Y. (2017). Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Research, 77(21), 5701-5705. https://doi.org/10.1158/0008-5472.CAN-17-1510.
Garcia Fortanet, J., Chen, C.- H.-T., Chen, Y.-N.- P., Chen, Z., Deng, Z., Firestone, B., Fekkes, P., Fodor, M., Fortin, P. D., Fridrich, C., Grunenfelder, D., Ho, S., Kang, Z. B., Karki, R., Kato, M., Keen, N., LaBonte, L. R., Larrow, J., Lenoir, F., … LaMarche, M. J. (2016). Allosteric inhibition of SHP2: Identification of a potent, selective, and orally efficacious phosphatase inhibitor. Journal of Medicinal Chemistry, 59(17), 7773-7782. https://doi.org/10.1021/acs.jmedchem.6b00680.
Gilmartin, A. G., Faitg, T. H., Richter, M., Groy, A., Seefeld, M. A., Darcy, M. G., Peng, X., Federowicz, K., Yang, J., Zhang, S.-Y., Minthorn, E., Jaworski, J.-P., Schaber, M., Martens, S., McNulty, D. E., Sinnamon, R. H., Zhang, H., Kirkpatrick, R. B., Nevins, N., … Kumar, R. (2014). Allosteric WIP1 Phosphatase inhibition through Flap-subdomain interaction. Nature Chemical Biology, 10(3), 181-187. https://doi.org/10.1038/nchembio.1427.
Grosskopf, S., Eckert, C., Arkona, C., Radetzki, S., Bohm, K., Heinemann, U., Wolber, G., von Kries, J.-P., Birchmeier, W., & Rademann, J. (2015). Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. ChemMedChem, 10(5), 815-826. https://doi.org/10.1002/cmdc.201500015.
Guo, L., Lin, Y., & Kwok, H. F. (2017). The function and regulation of PD-L1 in immunotherapy. ADMET & DMPK, 5(3), 159-172. https://doi.org/10.5599/admet.5.3.442.
Halgren, T. (2007). New method for fast and accurate binding-site identification and analysis. Chemical Biology & Drug Design, 69(2), 146-148. https://doi.org/10.1111/j.1747-0285.2007.00483.x.
Halliday, P. R., Blakely, C. M., & Bivona, T. G. (2019). Emerging targeted therapies for the treatment of non-small cell lung cancer. Current Oncology Reports, 21(3), 21. https://doi.org/10.1007/s11912-019-0770-x.
Hanna, N., Montagner, A., Lee, W. H., Miteva, M., Vidal, M., Vidaud, M., Parfait, B., & Raynal, P. (2006). Reduced phosphatase activity of Shp-2 in LEOPARD syndrome: Consequences for PI3K binding on Gab1. FEBS Letters, 580(10), 2477-2482. https://doi.org/10.1016/j.febslet.2006.03.088.
Hao, H.-X., Wang, H., Liu, C., Kovats, S., Velazquez, R., Lu, H., Pant, B., Shirley, M., Mayer, M. J., Pu, M., Lim, J., Fleming, M., Alexander, L., Farsidjani, A., LaMarche, M. J., Moody, S., Silver, S. J., Caponigro, G., Stuart, D. D., … Mohseni, M. (2019). Tumor intrinsic efficacy by SHP2 and RTK inhibitors in KRAS mutant cancers. Molecular Cancer Therapeutics, 18(12), 2368-2380. https://doi.org/10.1158/1535-7163.MCT-19-0170.
Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews Cancer, 4(9), 688-694. https://doi.org/10.1038/nrc1433.
Hatakeyama, M. (2019). Malignant Helicobacter pylori-associated diseases: Gastric cancer and MALT lymphoma. Advances in Experimental Medicine and Biology, 1149, 135-149. https://doi.org/10.1007/5584_2019_363.
He, L., Li, Y., Huang, X., Cheng, H., Ke, Y., & Wang, L. (2019). The prognostic significance of SHP2 and its binding protein Hook I in non-small cell lung cancer. OncoTargets and Therapy, 12, 5897-5906. https://doi.org/10.2147/OTT.S210223.
He, R., Yu, Z.-H., Zhang, R.-Y., Wu, L., Gunawan, A. M., Lane, B. S., Shim, J. S., Zeng, L.-F., He, Y., Chen, L., Wells, C. D., Liu, J. O., & Zhang, Z.-Y. (2015). Exploring the existing drug space for novel pTyr mimetic and SHP2 inhibitors. ACS Medicinal Chemistry Letters, 6(7), 782-786. https://doi.org/10.1021/acsmedchemlett.5b00118.
He, R. J., Yu, Z.-H., Zhang, R.-Y., & Zhang, Z.-Y. (2014). Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacologica Sinica, 35(10), 1227-1246. https://doi.org/10.1038/aps.2014.80.
He, R., Zeng, L.-F., He, Y., Zhang, S., & Zhang, Z.-Y. (2013). Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS Journal, 280(2), 731-750. https://doi.org/10.1111/j.1742-4658.2012.08718.x.
Hellmuth, K., Grosskopf, S., Lum, C. T., Wurtele, M., Roder, N., von Kries, J. P., Rosario, M., Rademann, J., & Birchmeier, W. (2008). Specific inhibitors of the protein tyrosine phosphatase SHP2 identified by high-throughput docking. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7275-7280. https://doi.org/10.1073/pnas.0710468105.
Hernandez-Munoz, I., Figuerola, E., Sanchez-Molina, S., Rodriguez, E., Fernandez-Marino, A. I., Pardo-Pastor, C., Bahamonde, M. I., Fernandez-Fernandez, J. M., Garcia-Dominguez, D. J., Hontecillas-Prieto, L., Lavarino, C., Carcaboso, A. M., de Torres, C., Tirado, O. M., de Alava, E., & Mora, J. (2016). RING1B contributes to Ewing sarcoma development by repressing the NaV1.6 sodium channel and the NF-κB pathway, independently of the fusion oncoprotein. Oncotarget, 7(29), 46283-46300. https://doi.org/10.18632/oncotarget.10092.
Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., & Hatakeyama, M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295(5555), 683-686. https://doi.org/10.1126/science.1067147.
Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., & Shoelson, S. E. (1998). Crystal structure of the tyrosine phosphatase SHP-2. Cell, 92(4), 441-450. https://doi.org/10.1016/s0092-8674(00)80938-1.
Hu, Z. Q., Li, J., Gao, Q., Wei, S., & Yang, B. (2017). SHP2 overexpression enhances the invasion and metastasis of ovarian cancer in vitro and in vivo. OncoTargets and Therapy, 10, 3881-3891. https://doi.org/10.2147/OTT.S138833.
Huang, W.-Q., Lin, Q., Zhuang, X., Cai, L.-L., Ruan, R.-S., Lu, Z.-X., & Tzeng, C.-M. (2014). Structure, function, and pathogenesis of shp2 in developmental disorders and tumorigenesis. Current Cancer Drug Targets, 14(6), 567-588. https://doi.org/10.2174/1568009614666140717105001.
Huang, Y., Wang, J., Cao, F., Jiang, H., Li, A., Li, J., Qiu, L., Shen, H., Chang, W., Zhou, C., Pan, Y., & Lu, Y. (2017). SHP2 associates with nuclear localization of STAT3: Significance in progression and prognosis of colorectal cancer. Scientific Reports, 7(1), 17597. https://doi.org/10.1038/s41598-017-17604-7.
Igbe, I., Shen, X.-F., Jiao, W., Qiang, Z., Deng, T., Li, S., Liu, W.-L., Liu, H.-W., Zhang, G.-L., & Wang, F. (2017). Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase. Oncotarget, 8(69), 113734-113748. https://doi.org/10.18632/oncotarget.22556.
Jakob, S., Schroeder, P., Lukosz, M., Buchner, N., Spyridopoulos, I., Altschmied, J., & Haendeler, J. (2008). Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. Journal of Biological Chemistry, 283(48), 33155-33161. https://doi.org/10.1074/jbc.M805138200.
Jeon, M. J., Kim, W. G., Lim, S., Choi, H.-J., Sim, S., Kim, T. Y., Shong, Y. K., & Kim, W. B. (2016). Alpha lipoic acid inhibits proliferation and epithelial mesenchynal transition of thyroid cancer cells. Molecular and Cellular Endocrinology, 419, 113-123. https://doi.org/10.1016/j.mce.2015.10.005.
Jia, Z., Barford, D., Flint, A. J., & Tonks, N. K. (1995). Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science, 268(5218), 1754-1758. https://doi.org/10.1126/science.7540771.
Jiang, L., Xu, W., Chen, Y., & Zhang, Y. (2019). SHP2 inhibitor specifically suppresses the stemness of KRAS-mutant non-small cell lung cancer cells. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3231-3238. https://doi.org/10.1080/21691401.2019.1646748.
Jin, W.-Y., Ma, Y., Li, W.-Y., Li, H.-L., & Wang, R.-L. (2018). Scaffold-based novel shp2 allosteric inhibitors design using receptor-ligand pharmacophore model, virtual screening and molecular dynamics. Computational Biology and Chemistry, 73, 179-188. https://doi.org/10.1016/j.compbiolchem.2018.02.004.
Jin, W., Wang, Q., Wu, M., Li, Y., Tang, G., Ping, Y., & Chu, P. K. (2017). Lanthanide-integrated supramolecular polymeric nanoassembly with multiple regulation characteristics for multidrug-resistant cancer therapy. Biomaterials, 129, 83-97. https://doi.org/10.1016/j.biomaterials.2017.03.020.
Kan, C., Yang, F., & Wang, S. (2018). SHP2-mediated signal networks in stem cell homeostasis. Stem Cells International, 2018, 8351374. https://doi.org/10.1155/2018/8351374.
Kaneshiro, S., Ebina, K., Shi, K., Higuchi, C., Hirao, M., Okamoto, M., Koizumi, K., Morimoto, T., Yoshikawa, H., & Hashimoto, J. (2014). IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. Journal of Bone and Mineral Metabolism, 32(4), 378-392. https://doi.org/10.1007/s00774-013-0514-1.
Karachaliou, N., Cardona, A. F., Bracht, J. W. P., Aldeguer, E., Drozdowskyj, A., Fernandez-Bruno, M., Chaib, I., Berenguer, J., Santarpia, M., Ito, M., Codony-Servat, J., & Rosell, R. (2019). Integrin-linked kinase (ILK) and src homology 2 domain-containing phosphatase 2 (SHP2): Novel targets in EGFR-mutation positive non-small cell lung cancer (NSCLC). EBioMedicine, 39, 207-214. https://doi.org/10.1016/j.ebiom.2018.11.036.
Keilhack, H., David, F. S., McGregor, M., Cantley, L. C., & Neel, B. G. (2005). Diverse biochemical properties of SHP2 mutants. Implications for disease phenotypes. Journal of Biological Chemistry, 280(35), 30984-30993. https://doi.org/10.1074/jbc.M504699200.
Kim, B., Jo, S., Park, S. B., Chae, C. H., Lee, K., Koh, B., & Shin, I. (2020). Development and structure-activity relationship study of SHP2 inhibitor containing 3,4,6-trihydroxy-5-oxo-5H-benzo[7]annulene. Bioorganic & Medicinal Chemistry Letters, 30(1), 126756. https://doi.org/10.1016/j.bmcl.2019.126756.
Kim, M., Morales, L. D., Jang, I.-S., Cho, Y.-Y., & Kim, D. J. (2018). Protein tyrosine phosphatases as potential regulators of STAT3 signaling. International Journal of Molecular Sciences, 19(9), 2708. https://doi.org/10.3390/ijms19092708.
Koltun, E. S., Aay, N., Buckl, A., Jogalekar, A. S., Kiss, G., Marquez, A., Mellem, K. T., Mordec, K., Saldajeno-Concar, M., Semko, C. M., Tibrewal, N., Tzitzilonis, C., Won, W., Smith, J. A., Wilson, S. E., Nichols, R. J., Wang, Z., Wilds, D., Singh, M., & Gill, A. L.RMC-4550, an allosteric inhibitor of SHP2: Synthesis, structure, and anti-tumor activity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018, Chicago, IL. Philadelphia (PA): AACR, Cancer Res. 78 (13 Suppl) (2018) Abstract nr 4878. https://doi.org/10.1158/1538-7445.AM2018-4878.
Kono, Y., Inomata, M., Hagiwara, S., Hiratsuka, T., Suzuki, K., Koga, H., Shiraishi, N., Noguchi, T., & Kitano, S. (2012). Antiproliferative effects of a new α-lipoic acid derivative, DHL-HisZnNa, in HT29 human colon cancer cells in vitro. Expert Opinion on Therapeutic Targets, 16(Suppl 1), S103-S109. https://doi.org/10.1517/14728222.2011.640320.
Kontaridis, M. I., Swanson, K. D., David, F. S., Barford, D., & Neel, B. G. (2006). PTPN11 (SHP2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. Journal of Biological Chemistry, 281(10), 6785-6792. https://doi.org/10.1074/jbc.M513068200.
Kostrzewa, T., Sahu, K. K., Gorska-Ponikowska, M., Tuszynski, J. A., & Kuban-Jankowska, A. (2018). Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug Design, Development and Therapy, 12, 4139-4147. https://doi.org/10.2147/DDDT.S186614.
Kuban-Jankowska, A., Gorska-Ponikowska, M., & Wozniak, M. (2017). Lipoic acid decreases the viability of breast cancer cells and activity of PTP1B and SHP2. Anticancer Research, 37(6), 2893-2898. https://doi.org/10.21873/anticanres.11642.
Kuban-Jankowska, A., Sahu, K. K., Gorska-Ponikowska, M., Tuszynski, J. A., & Wozniak, M. (2017). Inhibitory Activity of Iron Chelators ATA and DFO on Mcf-7 Breast Cancer Cells and Phosphatases PTP1B And SHP2. Anticancer Research, 37(9), 4799-4806. https://doi.org/10.21873/anticanres.11886.
Kuban-Jankowska, A., Sahu, K. K., Niedzialkowski, P., Gorska, M., Tuszynski, J. A., Ossowski, T., & Wozniak, M. (2015). Redox process is crucial for inhibitory properties of aurintricarboxylic acid against activity of YopH - Virulence factor of Yersinia pestis. Oncotarget, 6(21), 18364-18373. https://doi.org/10.18632/oncotarget.4625.
Lan, L., Holland, J. D., Qi, J., Grosskopf, S., Rademann, J., Vogel, R., Gyorffy, B., Wulf-Goldenberg, A., & Birchmeier, W. (2015). SHP2 signaling suppresses senescence in PyMT-induced mammary gland cancer in mice. The EMBO Journal, 34(11), 1493-1508. https://doi.org/10.15252/embj.201489004.
LaRochelle, J. R., Foder, M., Xu, X., Durzynska, I., Fan, L., Stams, T., Chan, H. M., LaMarche, M. J., Chopra, R., Wang, P., Fortin, P. D., Acker, M. G., & Blacklow, S. C. (2016). Structural and functional consequences of three-associated mutations of the oncogenic phosphatase SHP2. Biochemistry, 55(15), 2269-2277. https://doi.org/10.1021/acs.biochem.5b01287.
LaRochelle, J. R., Fodor, M., Ellegast, J. M., Liu, X., Vemulapalli, V., Mohseni, M., Stams, T., Buhrlage, S. J., Stegmaier, K., LaMarche, M. J., Acker, M. G., & Blacklow, S. C. (2017). Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. Bioorganic & Medicinal Chemistry, 25(24), 6479-6485. https://doi.org/10.1016/j.bmc.2017.10.025.
LaRochelle, J. R., Fodor, M., Vemulapalli, V., Mohseni, M., Wang, P., Stams, T., LaMarche, M. J., Chopra, R., Acker, M. G., & Blacklow, S. C. (2018). Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. Nature Communications, 9(1), 4508. https://doi.org/10.1038/s41467-018-06823-9.
Lawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J., & Lawrence, N. J. (2008). Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) based on oxindole scaffolds. Journal of Medicinal Chemistry, 51(16), 4948-4956. https://doi.org/10.1021/jm8002526.
Lazo, J. S., McQueeney, K. E., & Sharlow, E. R. (2017). New approaches to difficult drug targets: The phosphatase story. SLAS DISCOVERY: Advancing the Science of Drug Discovery, 22(9), 1071-1083. https://doi.org/10.1177/2472555217721142.
Lee, Y. S., Ehninger, D., Zhou, M., Oh, J. Y., Kang, M., Kwak, C., Ryu, H. H., Butz, D., Araki, T., Cai, Y., Balaji, J., Sano, Y., Nam, C. I., Kim, H. K., Kaang, B. K., Burger, C., Neel, B. G., & Silva, A. J. (2014). Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nature Neuroscience, 17(12), 1736-1743. https://doi.org/10.1038/nn.3863.
Legius, E., Schrander-Stumpel, C., Schollen, E., Pulles-Heintzberger, C., Gewillig, M., & Fryns, J. P. (2002). PTPN11 mutations in LEOPARD syndrome. Journal of Medical Genetics, 39(8), 571-574. https://doi.org/10.1136/jmg.39.8.571.
Leung, C. O. N., Tong, M., Chung, K. P. S., Zhou, L., Che, N., Tang, K. H., Ding, J., Lau, E. Y. T., Ng, I. O. L., Ma, S., & Lee, T. K. W. (2020). Overriding adaptive resistance to sorafenib via combination therapy with SHP2 blockade in hepatocellular carcinoma. Hepatology, 72(1), 155-168. https://doi.org/10.1002/hep.30989.
Li, B. J., Hao, X. Y., Ren, G. H., & Gong, Y. (2015). Effect of lipoic acid combined with paclitaxel on breast cancer cells. Genetics and Molecular Research, 14(4), 17934-17940. https://doi.org/10.4238/2015.December.22.18.
Li, H.-L., Ma, Y., Zheng, C.-J., Jin, W.-Y., Liu, W.-S., & Wang, R.-L. (2018). Exploring the effect of D61G mutation on SHP2 cause gain of function activity by a molecular dynamics study. Journal of Biomolecular Structure and Dynamics, 36(14), 3856-3868. https://doi.org/10.1080/07391102.2017.1402709.
Li, J., Jie, H.-B., Lei, Y., Gildener-Leapman, N., & Trivedi, S. (2015). PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T Cells in the tumor microenvironment. Cancer Research, 75(3), 508-518. https://doi.org/10.1158/0008-5472.CAN-14-1215.
Li, L., Modi, H., McDonald, T., Rossi, J., Yee, J.-K., & Bhatia, R. (2011). A critical role for SHP2 in STAT5 activation and growth factor-mediated proliferation, survival, and differentiation of human CD34− cells. Blood, 118(6), 1504-1515. https://doi.org/10.1182/blood-2010-06-288910.
Li, S. M. (2016). The biological function of SHP2 in human disease. Journal of Molecular Biology, 50(1), 27-33. https://doi.org/10.7868/S0026898416010110.
Li, S., Wang, L., Zhao, Q., Liu, Y., He, L., Xu, Q., Sun, X., Teng, L., Cheng, H., & Ke, Y. (2014). SHP2 positively regulates TGβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1. Journal of Biological Chemistry, 289(49), 34152-34160. https://doi.org/10.1074/jbc.M113.546077.
Liang, F., Huang, Z., Lee, S. Y., Liang, J., Ivanov, M. I., Alonso, A., Bliska, J. B., Lawrence, D. S., Mustelin, T., & Zhang, Z. Y. (2003). Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague. Journal of Biological Chemistry, 278(43), 41734-41741. https://doi.org/10.1074/jbc.M307152200.
Liu, D.-M., Cao, Z.-X., Yan, H.-L., Li, W., Yang, F., Zhao, W. J., Diao, Q. C., & Tan, Y. Z. (2020). A new abietane diterpenoid from Ajuga ovalifolia var. calantha induces human lung epithelial A549 cell apoptosis by inhibiting SHP2. Fitoterapia, 141, 104484. https://doi.org/10.1016/j.fitote.2020.104484.
Liu, D., Kong, G., Chen, Q. C., Wang, G., Li, J., Xu, Y., Iin, T., Tian, Y., Zhang, X., Yao, X., Feng, G., Lu, Z., & Chen, H. (2011). Fatty acids as natural specific inhibitors of the proto-oncogenic protein Shp2. Bioorganic & Medicinal Chemistry Letters, 21(22), 6833-6837. https://doi.org/10.1016/j.bmcl.2011.09.023.
Liu, Q., Qu, J., Zhao, M., Xu, Q., & Sun, Y. (2020). Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacological Research, 152, 104595. https://doi.org/10.1016/j.phrs.2019.104595.
Liu, S., Yu, Z., Yu, X., Huang, S.-X., Luo, Y., Wu, L., Shen, W., Yang, Z., Wang, L., Gunawan, A. M., Chan, R. J., Shen, B., & Zhang, Z.-Y. (2011). SHP2 is a target of the immunosuppressant tautomycetin. Chemistry & Biology, 18(1), 101-110. https://doi.org/10.1016/j.chembiol.2010.10.015.
Liu, W.-S., Jin, W.-Y., Zhou, L., Lu, X.-H., Li, W.-Y., Ma, Y., & Wang, R.-L. (2019). Structure based design of selective SHP2 inhibitors by De novo design, synthesis and biological evaluation. Journal of Computer-Aided Molecular Design, 33(8), 759-774. https://doi.org/10.1007/s10822-019-00213-z.
Liu, W.-S., Yang, B., Wang, R.-R., Li, W.-Y., Ma, Y.-C., Zhou, L., Du, S., Ma, Y., & Wang, R.-L. (2020). Design, synthesis and biological evaluation of pyridine derivatives as selective SHP2 inhibitors. Bioorganic Chemistry, 100, 103875. https://doi.org/10.1016/j.bioorg.2020.103875.
Liu, W., Yu, B., Xu, G., Xu, W.-R., Loh, M. L., Tang, L.-D., & Qu, C.-K. (2013). Identification of Cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). Journal of Medicinal Chemistry, 56(18), 7212-7221. https://doi.org/10.1021/jm400474r.
Liu, X., Zheng, H., Li, X., Wang, S., Meyerson, H. J., Yang, W., Neel, B. G., & Qu, C. K. (2016). Gain-of-function mutations of Ptpn11 (SHP2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies. Proceedings of the National Academy of Sciences of the United States of America, 113(4), 984-989. https://doi.org/10.1073/pnas.1508535113.
Liu, Z.-Q., Liu, T., Chen, C., Li, M.-Y., Wang, Z.-Y., Chen, R.-S., Wei, G.-X., Wang, X.-Y., & Luo, D.-Q. (2015). Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicology and Applied Pharmacology, 285(1), 61-70. https://doi.org/10.1016/j.taap.2015.03.011.
Loh, M. L., Vattikuti, S., Schubbert, S., Reynolds, M. G., Carlson, E., Lieuw, K. H., Cheng, J. W., Lee, C. M., Stokoe, D., Bonifas, J. M., Curtiss, N. P., Gotlib, J., Meshinchi, S., Le Beau, M. M., Emanuel, P. D., & Shannon, K. M. (2004). Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 103(6), 2325-2331. https://doi.org/10.1182/blood-2003-09-3287.
Lorenz, U. (2009). SHP-1 and SHP-2 in T cells: Two phosphatases functioning at many levels. Immunological Reviews, 228(1), 342-359. https://doi.org/10.1111/j.1600-065X.2008.00760.x.
Lu, H., Liu, C., Velazquez, R., Wang, H., Dunkl, L. M., Kazic-Legueux, M., Haberkorn, A., Billy, E., Manchado, E., Brachmann, S. M., Moody, S. E., Engelman, J. A., Hammerman, P. S., Caponigro, G., Mohseni, M., & Hao, H.-X. (2019). SHP2 inhibition overcomes RTK-mediated pathway reactivation in KRAS-mutant tumors treated with MEK inhibitors. Molecular Cancer Therapeutics, 18(7), 1323-1334. https://doi.org/10.1158/1535-7163.MCT-18-0852.
Lu, S., He, X., Ni, D., & Zhang, J. (2019b). Allosteric modulator discovery: From serendipity to structure-based design. Journal of Medicinal Chemistry, 62(14), 6405-6421. https://doi.org/10.1021/acs.jmedchem.8b01749.
Lu, S., Huang, W., Wang, Q., Shen, Q., Li, S., Nussinov, R., & Zhang, J. (2014). The structural basis of ATP as an allosteric modulator. PLoS Computational Biology, 10(9), e1003831. https://doi.org/10.1371/journal.pcbi.1003831.
Lu, W., Shen, K., & Cole, P. A. (2003). Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. Biochemistry, 42(18), 5461-5468. https://doi.org/10.1021/bi0340144.
Mainardi, S., Mulero-Sanchez, A., Prahallad, A., Germano, G., Bosma, A., Krimpenfort, P., Lieftink, C., Steinberg, J. D., de Wit, N., Goncalves-Ribeiro, S., Nadal, E., Bardelli, A., Villanueva, A., & Bernards, R. (2018). SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nature Medicine, 24(7), 961-967. https://doi.org/10.1038/s41591-018-0023-9.
Marsh-Armstrong, B., Fajnzylber, J. M., Korntner, S., Plaman, B. A., & Bishop, A. C. (2018). The allosteric site on SHP2's protein tyrosine phosphatase domain is targetable with druglike small molecules. ACS Omega, 3(11), 15763-15770. https://doi.org/10.1021/acsomega.8b02200.
Matalkah, F., Martin, E., Zhao, H., & Agazie, Y. M. (2016). SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Research, 18(1), 2. https://doi.org/10.1186/s13058-015-0659-z.
Meng, J., Zhang, X.-T., Liu, X.-L., Fan, L., Li, C., Sun, Y., Liang, X.-H., Wang, J.-B., Mei, Q.-B., Zhang, F., & Zhang, T. (2016). WSTF promotes proliferation and invasion of lung cancer cells by inducing EMT via PI3K/Akt and IL-6/STAT3 signaling pathways. Cellular Signalling, 28(11), 1673-1682. https://doi.org/10.1016/j.cellsig.2016.07.008.
Miller, R. M., Paavilainen, V. O., Krishnan, S., Serafimova, I. M., & Taunton, J. (2013). Electrophilic fragment-based design of reversible covalent kinase inhibitors. Journal of the American Chemical Society, 135(14), 5298-5301. https://doi.org/10.1021/ja401221b.
Miura, K., Wakayama, Y., Tanino, M., Orba, Y., Sawa, H., Hatakeyama, M., Tanaka, S., Sabe, H., & Mochizuki, N. (2013). Involvement of EphA2-mediated tyrosine phosphorylation of SHP2 in SHP2-regulated activation of extracellular signal-regulated kinase. Oncogene, 32(45), 5292-5301. https://doi.org/10.1038/onc.2012.571.
Miyamoto, D., Miyamoto, M., Takahashi, A., Yomogita, Y., Higashi, H., Kondo, S., & Hatakeyama, M. (2008). Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors. Oncogene, 27(25), 3508-3515. https://doi.org/10.1038/sj.onc.1211019.
Mohi, M. G., Williams, I. R., Dearolf, C. R., Chan, G., Kutok, J. L., Cohen, S., Morgan, K., Boulton, C., Shigematsu, H., Keilhack, H., Akashi, K., Gilliland, D. G., & Neel, B. G. (2005). Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by SHP2 (PTPN11) mutations. Cancer Cell, 7(2), 179-191. https://doi.org/10.1016/j.ccr.2005.01.010.
Muller, J. P., Schonherr, C., Markova, B., Bauer, R., Stocking, C., & Bohmer, F. D. (2008). Role of SHP2 for FLT3-dependent proliferation and transformation in 32D cells. Leukemia, 22(10), 1945-1948. https://doi.org/10.1038/leu.2008.73.
Nakamura, T., Colbert, M., Krenz, M., Molkentin, J. D., Hahn, H. S., Dorn, G. W., & Robbins, J. (2007). Mediating ERK1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. Journal of Clinical Investigation, 117(8), 2123-2132. https://doi.org/10.1172/JCI30756.
National Cancer Registry Programme. (2001). Consolidated report of the population-based cancer registries: 1990-1996. Indian Council of Medical Research.
Neel, B. G., Gu, H., & Pao, L. (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences, 28(6), 284-293. https://doi.org/10.1016/S0968-0004(03)00091-4.
Nichols, R. J., Haderk, F., Stahlhut, C., Schulze, C. J., Hemmati, G., Wildes, D., Tzitzilonis, C., Mordec, K., Marquez, A., Romero, J., Hsieh, T., Zaman, A., Olivas, V., McCoach, C., Blakely, C. M., Wang, Z., Kiss, G., Koltun, E. S., Gill, A. L., … Bivona, T. G. (2018). RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nature Cell Biology, 20(9), 1064-1073. https://doi.org/10.1038/s41556-018-0169-1.
Niihori, T., Aoki, Y., Ohashi, H., Kurosawa, K., Kondoh, T., Ishikiriyama, S., Kawame, H., Kamasaki, H., Yamanaka, T., Takada, F., Nishio, K., Sakurai, M., Tamai, H., Nagashima, T., Suzuki, Y., Kure, S., Fujii, K., Imaizumi, M., & Matsubara, Y. (2005). Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. Journal of Human Genetics, 50(4), 192-202. https://doi.org/10.1007/s10038-005-0239-7.
Niogret, C., Birchmeier, W., & Guarda, G. (2019). SHP-2 in Lymphocytes' cytokine and inhibitory receptor signalling. Frontiers in Immunology, 10, 2468. https://doi.org/10.3389/fimmu.2019.02468.
Noren-Muller, A., Reis-Correa, I., Prinz, H., Rosenbaum, C., Saxena, K., Schwalbe, H. J., Vestweber, D., Cagna, G., Schunk, S., Schwarz, O., Schiewe, H., & Waldmann, H. (2006). Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proceedings of the National Academy of Sciences of the United States of America, 103(28), 10606-10611. https://doi.org/10.1073/pnas.0601490103.
Nussinov, R., & Tsai, C.-J. (2014). Unraveling structural mechanisms of allosteric drug action. Trends in Pharmacological Sciences, 35(5), 256-264. https://doi.org/10.1016/j.tips.2014.03.006.
Nussinov, R., Tsai, C.-J., & Jang, H. (2016). Independent and core pathways in oncogenic KRAS signaling. Expert Review of Proteomics, 13(8), 711-716. https://doi.org/10.1080/14789450.2016.1209417.
Nussinov, R., Tsai, C.-J., & Jang, H. (2017). A new view of pathway-driven drug resistance in tumor proliferation. Trends in Pharmacological Sciences, 38(5), 427-437. https://doi.org/10.1016/j.tips.2017.02.001.
Oh, J.-Y., Rhee, S., Silva, A. J., Lee, Y.-S., & Kim, H. K. (2017). Noonan syndrome-associated SHP2 mutation differentially modulates the expression of postsynaptic receptors according to developmental maturation. Neuroscience Letters, 649, 41-47. https://doi.org/10.1016/j.neulet.2017.03.036.
Ohigashi, Y., Sho, M., Yamada, Y., Tsurui, Y., Hamada, K., Ikeda, N., Mizuno, T., Yoriki, R., Kashizuka, H., Yane, K., Tsushima, F., Otsuki, N., Yagita, H., Azuma, M., & Nakajima, Y. (2005). Clinical significance of Programmed Death-1 Ligand-1 and Programmed Death-1 Ligand-2 expression in human esophageal cancer. Clinical Cancer Research, 11(8), 2947-2953. https://doi.org/10.1158/1078-0432.CCR-04-1469.
Oishi, K., Gaengel, K., Krishnamoorthy, S., Kamiya, K., Kim, I.-K., Ying, H., Weber, U., Perkins, L. A., Tartaglia, M., Mlodzik, M., Pick, L., & Gelb, B. D. (2006). Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations. Human Molecular Genetics, 15(4), 543-553. https://doi.org/10.1093/hmg/ddi471.
Ostman, A., Hellberg, C., & Bohmer, F. D. Protein-tyrosine phosphatases and cancer, Nat. Rev. Cancer 6 (4) (2006) 307-320. doi: 10.1038/nrc1837.
Padua, R. A. P., Sun, Y., Marko, I., Pitsawong, W., Stiller, J. B., Otten, R., & Kern, D. (2018). Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nature Communications, 9(1), 4507. https://doi.org/10.1038/s41467-018-06814-w.
Parsonidis, P., Shaik, M., Serafeim, A. P., Vlachou, I., Daikopoulou, V., & Papasotiriou, I. (2019). Design, synthesis, and in vitro activity of pyrazine compounds. Molecules, 24(23), 4389. https://doi.org/10.3390/molecules24234389.
Patel, Y., Shah, N., Lee, J. S., Markoutsa, E., Jie, C., Liu, S., Botbyl, R., Reisman, D., Xu, P., & Chen, H. (2016). A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAPK signaling axis regulates breast cancer cell proliferation and tumor growth. Oncotarget, 7(14), 18295-18308. https://doi.org/10.18632/oncotarget.7577.
Perkins, L. A., Larsen, I., & Perrimon, N. (1992). Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell, 70(2), 225-236. https://doi.org/10.1016/0092-8674(92)90098-w.
Puchsaka, P., Chaotham, C., & Chanvorachote, P. (2016). α-Lipoic acid sensitizes lung cancer cells to chemotherapeutic agents and anoikis via integrin β1/β3 downregulation. International Journal of Oncology, 49(4), 1445-1456. https://doi.org/10.3892/ijo.2016.3624.
Qi, C., Han, T., Tang, H., Huang, K., Min, J., Li, J., Ding, X., & Xu, Z. (2017). Shp2 inhibits proliferation of esophageal squamous cell cancer via dephosphorylation of STAT3. International Journal of Molecular Sciences, 18(1), 134. https://doi.org/10.3390/ijms18010134.
Qu, C. K. (2002). Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1592(3), 297-301. https://doi.org/10.1016/s0167-4889(02)00322-1.
Ran, H., Tsutsumi, R., Araki, T., & Neel, B. G. (2016). Sticking it to cancer with molecular glue for SHP2. Cancer Cell, 30(2), 194-196. https://doi.org/10.1016/j.ccell.2016.07.010.
Reddy, R. H., Kim, H., Cha, S., Lee, B., & Kim, Y. J. (2017). Structure-based virtual screening of protein tyrosine phosphatase inhibitors: Significance, challenges, and solutions. Journal of Microbiology and Biotechnology, 27(5), 878-895. https://doi.org/10.4014/jmb.1701.01079.
Rehman, A. U., Rahman, M. U., Khan, M. T., Saud, S., Liu, H., Song, D., Sultana, P., Wadood, A., & Chen, H.-F. (2018). The landscape of protein tyrosine phosphatase (SHP2) and cancer. Current Pharmaceutical Design, 24(32), 3767-3777. https://doi.org/10.2174/1381612824666181106100837.
Rocha, S. F. L. S., & Sant'Anna, C. M. R. (2019). A procedure combining molecular docking and semiempirical method PM7 for identification of selective Shp2 inhibitors. Biopolymers, 110(11), e23320. https://doi.org/10.1002/bip.23320.
Ruess, D. A., Heynen, G. J., Ciecielski, K. J., Ai, J., Berninger, A., Kabacaoglu, D., Gorgulu, K., Dantes, Z., Wörmann, S. M., Diakopoulos, K. N., Karpathaki, A. F., Kowalska, M., Kaya-Aksoy, E., Song, L., Zeeuw van der Laan, E. A., Lopez-Alberca, M. P., Nazare, M., Reichert, M., Saur, D., … Algul, H. (2018). Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nature Medicine, 24(7), 954-960. https://doi.org/10.1038/s41591-018-0024-8.
Salvi, M., Stringaro, A., Brunati, A. M., Agostinelli, E., Arancia, G., Clari, G., & Toninello, A. (2004). Tyrosine phosphatase activity in mitochondria: Presence of Shp-2 phosphatase in mitochondria. Cellular and Molecular Life Sciences, 61(18), 2393-2404. https://doi.org/10.1007/s00018-004-4211-z.
Sarnath, D., & Khanna, A. (2014). Current status of cancer burden: Global and Indian scenario. Biomedical Research, 1(1), 1-5.
Sarver, P., Acker, M. G., Bagdanoff, J., Chen, Z., Chen, Y.-N., Chan, H., Firestone, B., Fodor, M., Fortanet, J., Hao, H., Hentemann, M., Kato, M., Koenig, R., LaBonte, L. R., Liu, G., Liu, S., Liu, C., McNeill, E., Mohseni, M., … LaMarche, M. J. (2019). 6-Amino-3-methylpyrimidinones as potent, selective, and orally efficacious SHP2 inhibitors. Journal of Medicinal Chemistry, 62(4), 1793-1802. https://doi.org/10.1021/acs.jmedchem.8b01726.
Satheeshkumar, R., Zhua, R., Feng, B., Huang, C., Gao, Y., Gao, L.-X., Shen, C., Hou, T.-J., Xu, L., Li, J., Zhu, Y.-L., Zhou, Y.-B., & Wang, W.-L. (2020). Synthesis and biological evaluation of heterocyclic bis-aryl amides as novel Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 30(11), 127170. https://doi.org/10.1016/j.bmcl.2020.127170.
Schneeberger, V. E., Ren, Y., Luetteke, N., Huang, Q., Chen, L., Lawrence, H. R., Lawrence, N. J., Haura, E. B., Koomen, J. M., Coppola, D., & Wu, J. (2015). Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma. Oncotarget, 6(8), 6191-6202. https://doi.org/10.18632/oncotarget.3356.
Schneider, R., Beumer, C., Simard, J. R., Grutter, C., & Rauh, D. (2013). Selective detection of allosteric phosphatase inhibitors. Journal of the American Chemical Society, 135(18), 6838-6841. https://doi.org/10.1021/ja4030484.
Schubbert, S., Lieuw, K., Rowe, S. L., Lee, C. M., Li, X., Loh, M. L., Clapp, D. W., & Shannon, K. M. (2005). Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood, 106(1), 311-317. https://doi.org/10.1182/blood-2004-11-4207.
Scott, L. M., Chen, L., Daniel, K. G., Brooks, W. H., Guida, W. C., Lawrence, H. R., Sebti, S. M., Lawrence, N. J., & Wu, J. (2011). SHP2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Bioorganic & Medicinal Chemistry Letters, 21(2), 730-733. https://doi.org/10.1016/j.bmcl.2010.11.117.
Scott, L. M., Lawrence, H. R., Sebti, S. M., Lawrence, N. J., & Wu, J. (2010). Targeting protein tyrosine phosphatases for anticancer drug discovery. Current Pharmaceutical Design, 16(16), 1843-1862. https://doi.org/10.2174/138161210791209027.
Serafimova, I. M., Pufall, M. A., Krishnan, S., Duda, K., Cohen, M. S., Maglathlin, R. L., McFarland, J. M., Miller, R. M., Frodin, M., & Taunton, J. (2012). Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nature Chemical Biology, 8(5), 471-476. https://doi.org/10.1038/nchembio.925.
Serrano, M. (2015). SHP2: A new target for pro-senescence cancer therapies. The EMBO Journal, 34(11), 1439-1441. https://doi.org/10.15252/embj.201591616.
Sharma, N., Everingham, S., Ramdas, B., Kapur, R., & Craig, A. W. B. (2014). SHP2 phosphatase promotes mast cell chemotaxis toward stem cell factor via enhancing activation of the Lyn/Vav/Rac signaling axis. The Journal of Immunology, 192(10), 4859-4866. https://doi.org/10.4049/jimmunol.1301155.
Sharma, N., Everingham, S., Zeng, L.-F., Zhang, Z.-Y., Kapur, R., & Craig, A. W. B. (2014). Oncogenic KIT-induced aggressive systemic mastocytosis requires SHP2/PTPN11 phosphatase for disease progression in mice. Oncotarget, 5(15), 6130-6141. https://doi.org/10.18632/oncotarget.2177.
Stanford, S. M., & Bottini, N. (2017). Targeting tyrosine phosphatases: Time to end the stigma. Trends in Pharmacological Sciences, 38(6), 524-540. https://doi.org/10.1016/j.tips.2017.03.004.
Stuckey, J. E., Schubert, H. L., Fauman, E. B., Zhang, Z.-Y., Dixon, J. E., & Saper, M. A. (1994). Crystal structure of the Yersinia protein tyrosine phosphatase at 2.5 Å and the complex with tungstate. Nature, 370(6490), 571-575. https://doi.org/10.1038/370571a0.
Sullivan, N. J., Sasser, A. K., Axel, A. E., Vesuna, F., Raman, V., Ramirez, N., Oberyszyn, T. M., & Hall, B. M. (2009). Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene, 28(33), 2940-2947. https://doi.org/10.1038/onc.2009.180.
Sun, B., Jensen, N. R., Chung, D., Yang, M., LaRue, A. C., Cheung, H. W., & Wang, Q. (2019). Synergistic effects of SHP2 and PI3K pathway inhibitors in GAB2-overexpressing ovarian cancer. American Journal of Cancer Research, 9(1), 145-159.
Sun, X., Zhang, J., Wang, Z., Ji, W., Tian, R., Zhang, F., & Niu, R. (2017). SHP2 plays a critical role in IL-6-induced EMT in breast cancer cells. International Journal of Molecular Sciences, 18(2), 395-410. https://doi.org/10.3390/ijms18020395.
Sun, Y.-J., Zhuo, Z.-L., Xian, H.-P., Chen, K.-Z., Yang, F., & Zhao, X.-T. (2017). Shp2 regulates migratory behavior and response to EGFR-TKIs through ERK1/2 pathway activation in non-small cell lung cancer cells. Oncotarget, 8(53), 91123-91133. https://doi.org/10.18632/oncotarget.20249.
Tajan, M., de Rocca Serra, A., Valet, P., Edouard, T., & Yart, A. (2015). SHP2 sails from physiology to pathology. European Journal of Medical Genetics, 58(10), 509-525. https://doi.org/10.1016/j.ejmg.2015.08.005.
Tang, C., Luo, H., Luo, D., Yang, H., & Zhou, X. (2018). Src homology phosphotyrosyl phosphatase 2 mediates cisplatin-related drug resistance by inhibiting apoptosis and activating the Ras/PI3K/Akt1/surviving. Oncology Reports, 39(2), 611-618. https://doi.org/10.3892/or.2017.6109.
Tang, K., Jia, Y.-N., Yu, B., & Liu, H.-M. (2020). Medicinal chemistry strategies for the development of protein tyrosine phosphatase SHP2 inhibitors and PROTACs degraders, xx (2020) 112657. doi: 10.1016/j.ejmech.2020.112657.
Tartaglia, M., Martinelli, S., Cazzaniga, G., Cordeddu, V., Iavarone, I., Spinelli, M., Palmi, C., Carta, C., Pession, A., Arico, M., Masera, G., Basso, G., Sorcini, M., Gelb, B. D., & Biondi, A. (2004). Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood, 104(2), 307-313. https://doi.org/10.1182/blood-2003-11-3876.
Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., van der Burgt, I., Crosby, A. H., Ion, A., Jeffery, S., Kalidas, K., Patton, M. A., Kucherlapati, R. S., & Gelb, B. D. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genetics, 29(4), 465-468. https://doi.org/10.1038/ng772.
Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., Hahlen, K., Hasle, H., Licht, J. D., & Gelb, B. D. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 34(2), 148-150. https://doi.org/10.1038/ng1156.
Tiganis, T., & Bennett, A. M. (2007). Protein tyrosine phosphatase function: The substrate perspective. Biochemical Journal, 402(1), 1-15. https://doi.org/10.1042/BJ20061548.
Tonks, N. K. (2006). Protein tyrosine phosphatases: From genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833-846. https://doi.org/10.1038/nrm2039.
Tonks, N. K. (2013). Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. FEBS Journal, 280(2), 346-378. https://doi.org/10.1111/febs.12077.
Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., Atkins, M. B., Leming, P. D., Spigel, D. R., Antonia, S. J., Horn, L., Drake, C. G., Pardoll, D. M., Chen, L., Sharfman, W. H., Anders, R. A., … Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443-2454. https://doi.org/10.1056/NEJMoa1200690.
Torres-Ayuso, P., & Brognard, J. (2018). Shipping out MEK inhibitor resistance with SHP2 inhibitors. Cancer Discovery, 8(10), 1210-1212. https://doi.org/10.1158/2159-8290.CD-18-0915.
Tsutsumi, R., Masoudi, M., Takahashi, A., Fujii, Y., Hayashi, T., Kikuchi, I., Satou, Y., Taira, M., & Hatakeyama, M. (2013). Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Developmental Cell, 26(6), 658-665. https://doi.org/10.1016/j.devcel.2013.08.013.
Tsutsumi, R., Ran, H., & Neel, B. G. (2018). Off-target inhibition by active site-targeting SHP2 inhibitors. FEBS Open Bio, 8(9), 1405-1411. https://doi.org/10.1002/2211-5463.12493.
Tzeng, S. R., & Kalodimos, C. G. (2013). Allosteric inhibition through suppression of transient conformational states. Nature Chemical Biology, 9(7), 462-465. https://doi.org/10.1038/nchembio.1250.
Udi, Y., Fragai, M., Grossman, M., Mitternacht, S., Arad-Yellin, R., Calderone, V., Melikian, M., Tccafondi, M., Berezovsky, I. N., Luchinat, C., & Sagi, I. (2013). Unraveling hidden regulatory sites in structurally homologous metalloproteases. Journal of Molecular Biology, 425(13), 2330-2346. https://doi.org/10.1016/j.jmb.2013.04.009.
Vazhappilly, C. G., Saleh, E., Ramadan, W., Menon, V., Al-Azawi, A. M., Tarazi, H., Abdu-Allah, H., El-Shorbagi, A.-N., & El-Awady, R. (2019). Inhibition of SHP2 by new compounds induces differential effects on RAS/RAF/ERK and PI3K/AKT pathways in different cancer cell types. Investigational New Drugs, 37(2), 252-261. https://doi.org/10.1007/s10637-018-0626-5.
Vidal, M., Gigoux, V., & Garbay, C. (2001). SH2 and SH3 domains as targets for anti-proliferative agents. Critical Reviews in Oncology/Hematology, 40(2), 175-186. https://doi.org/10.1016/s1040-8428(01)00142-1.
Voena, C., Conte, C., Ambrogio, C., Boeri Erba, E., Boccalatte, F., Mohammed, S., Jensen, O. N., Palestro, G., Inghirami, G., & Chiarle, R. (2007). The tyrosine phosphatase SHP2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Research, 67(9), 4278-4286. https://doi.org/10.1158/0008-5472.CAN-06-4350.
Wang, B., Zhang, W., Jankovic, V., Golubov, J., Poon, P., Oswald, E. M., Gurer, C., Wei, J., Ramos, I., Wu, Q., Waite, J., Ni, M., Adler, C., Wei, Y., Macdonald, L., Rowlands, T., Brydges, S., Siao, J., Poueymirou, W., … Skokos, D. (2018). Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8+ T cell dysfunction and maintain memory phenotype. Science Immunology, 3(29), eaat7061. https://doi.org/10.1126/sciimmunol.aat7061.
Wang, H. C., Chiang, W. F., Huang, H. H., Shen, Y. Y., & Chiang, H. C. (2014). Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis. BMC Cancer, 14, 442. https://doi.org/10.1186/1471-2407-14-442.
Wang, J., Mizui, M., Zeng, L.-F., Bronson, R., Finnell, M., Terhorst, C., Kyttaris, V. C., Tsokos, G. C., Zhang, Z.-Y., & Kontaridis, M. I. (2016). Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus. Journal of Clinical Investigation, 126(6), 2077-2092. https://doi.org/10.1172/JCI87037.
Wang, M.-Y., Cheng, X.-C., Chen, X.-B., Li, Y., Zang, L.-L., Duan, Y.-Q., Chen, M.-Z., Yu, P., Sun, H., & Wang, R.-L. (2018). Synthesis and biological evaluation of novel N-aryl-ω-(benzoazol-2-yl)-sulfanylalkanamides as dual inhibitors of α-glucosidase and protein tyrosine phosphatase 1B. Chemical Biology & Drug Design, 92(3), 1647-1656. https://doi.org/10.1111/cbdd.13331.
Wang, Q., Yang, Z. L., Zou, Q., Yuan, Y., Li, J., Liang, L., Zeng, G., & Chen, S. (2016). SHP2 and UGP2 are biomarkers for progression and poor prognosis of gallbladder cancer. Cancer Investigation, 34(6), 255-264. https://doi.org/10.1080/07357907.2016.1193745.
Wang, R.-R., Liu, W.-S., Zhou, L., Ma, Y., & Wang, R.-L. (2020). Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. Journal of Biomolecular Structure and Dynamics, 38(5), 1525-1538. https://doi.org/10.1080/07391102.2019.1613266.
Wang, R.-R., Ma, Y., Du, S., Li, W.-Y., Sun, Y.-Z., Zhou, H., & Wang, R.-L. (2019). Exploring the reason for increased activity of SHP2 caused by D61Y mutation through molecular dynamics. Computational Biology and Chemistry, 78, 133-143. https://doi.org/10.1016/j.compbiolchem.2018.10.013.
Wang, S., Yao, Y., Li, H., Zheng, G., Lu, S., & Chen, W. (2019). Tumor-associated macrophages (TAMs) depend on Shp2 for their anti-tumor roles in colorectal cancer. American Journal of Cancer Research, 9(9), 1957-1969.
Wang, W.-L., Chen, X.-Y., Gao, Y., Gao, L.-X., Sheng, L., Zhu, J., Xu, L., Ding, Z.-Z., Zhang, C., Li, J.-Y., Li, J., & Zhou, Y.-B. (2017). Benzo[c][1,2,5]thiadiazole derivatives: A new class of potent Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(23), 5154-5157. https://doi.org/10.1016/j.bmcl.2017.10.059.
Wang, W.-L., Huang, C., Gao, L.-X., Tang, C.-L., Wang, J.-Q., Wu, M.-C., Shang, L., Chen, H.-J., Nan, F.-J., Li, J.-Y., Li, J., & Feng, B. (2014). Synthesis and biological evaluation of novel bis-aromatic amides as novel PTP1B inhibitors. Bioorganic & Medicinal Chemistry Letters, 24, 1889-1894. https://doi.org/10.1016/j.bmcl.2014.03.015.
Wang, W.-L., Huang, C., Gao, L.-X., Tang, C.-L., Wang, J.-Q., Wu, M.-C., Sheng, L., Chen, H.-J., Nan, F.-J., Li, J.-Y., Li, J., & Feng, B. (2014b). Synthesis and biological evaluation of novel bis-aroatic amides as novel PTP1B inhibitors. Bioorganic & Medicinal Chemistry Letters, 24(8), 1889-1894. https://doi.org/10.1016/j.bmcl.2014.03.015.
Wang, W., Luo, H., Gao, Y., Gao, L., Sheng, L., Zhou, Y., Li, J., Li, J., & Feng, B. (2016). Synthesis of aromatic amide derivatives and their biological evaluation against protein tyrosine phosphatase 1B and Scr Homology-2 domain containing protein tyrosine phosphatase-2. Chinese Journal of Organic Chemistry, 36(9), 2142-2149. https://doi.org/10.6023/cjoc201603045.
Wong, G. S., Zhou, J., Liu, J. B., Wu, Z., Xu, X., Li, T., Xu, D., Schumacher, S. E., Puschhof, J., McFarland, J., Zou, C., Dulak, A., Henderson, L., Xu, P., O’Day, E., Rendak, R., Liao, W.-L., Cecchi, F., Hembrough, T., … Bass, A. J. (2018). Targeting wild-type KRAS amplified gastroesophageal cancer through combined MEK and SHP2. Nature Medicine, 24(7), 968-977. https://doi.org/10.1038/s41591-018-0022-x.
World Health Organization. (2018). Global Health Observatory. : World Health Organization. Retrieved from https://who.int/gho/database/en/.
Wu, D., Pang, Y., Ke, Y., Yu, J., He, Z., Tautz, L., Mustelin, T., Ding, S., Huang, Z., & Feng, G.-S. (2009). A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase. PLoS One, 4(3), e4914. https://doi.org/10.1371/journal.pone.0004914.
Wu, T. R., Hong, Y. K., Wang, X.-D., Ling, M. Y., Dragoi, A. M., Chung, A. S., Campbell, A. G., Han, Z.-Y., Feng, G.-S., & Chin, Y. E. (2002). SHP-2 is a dual-specificity phosphatase involved in Stat1 Dephosphorylation at both tyrosine and serine residues in nuclei. Journal of Biological Chemistry, 277(49), 47572-47580. https://doi.org/10.1074/jbc.M207536200.
Wu, X., Xu, G., Li, X., Xu, W., Li, Q., Liu, W., Kirby, K. A., Loh, M. L., Li, J., Sarafianos, S. G., & Qu, C.-K. (2019). Small molecule inhibitor that stabilizes the autoinhibited conformation of the oncogenic tyrosine phosphatase SHP2. Journal of Medicinal Chemistry, 62(3), 1125-1137. https://doi.org/10.1021/acs.jmedchem.8b00513.
Xie, J., Si, X., Gu, S., Wang, M., Shen, J., Li, H., Shen, J., Li, D., Fang, Y., Liu, C., & Zhu, J. (2017). Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. Journal of Medicinal Chemistry, 60(24), 10205-10219. https://doi.org/10.1021/acs.jmedchem.7b01520.
Xu, D., & Qu, C.-K. (2008). Protein tyrosine phosphatases in the JAK/STAT pathway. Frontiers in Bioscience, 13, 4925-4932. https://doi.org/10.2741/3051.
Xu, J., Zeng, L.-F., Shen, W., Turchi, J. J., & Zhang, Z.-Y. (2013). Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma. Biochemical and Biophysical Research Communications, 439(4), 586-590. https://doi.org/10.1016/j.bbrc.2013.09.028.
Xue, W., Tian, J., Wang, X. S., Xia, J., & Wu, S. (2019). Discovery of potent PTP1B inhibitors via structure-based drug design, synthesis and in vitro bioassay of Norathyriol derivatives. Bioorganic Chemistry, 86, 224-234. https://doi.org/10.1016/j.bioorg.2019.01.059.
Yadav, A., Kumar, B., Datta, J., Teknos, T. N., & Kumar, P. (2011). IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Molecular Cancer Research, 9(12), 1658-1667. https://doi.org/10.1158/1541-7786.MCR-11-0271.
Yang, C.-Y., Chang, P.-W., Hsu, W.-H., Chang, H.-C., Chen, C.-L., Lai, C.-C., Chiu, W.-T., & Chen, H.-C. (2019). Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 38(21), 4075-4094. https://doi.org/10.1038/s41388-019-0705-x.
Yang, W., Wang, J., Moore, D. C., Liang, H., Dooner, M., Wu, Q., Terek, R., Chen, Q., Ehrlich, M. G., Quesenberry, P. J., & Neel, B. G. (2013). Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature, 499(7459), 491-495. https://doi.org/10.1038/nature12396.
Yang, X., Tang, C., Luo, H., Wang, H., & Zhou, X. (2017). Shp2 confers cisplatin resistance in small cell lung cancer via an AKT-mediated increase in CA916798. Oncotarget, 8(14), 23664-23674. https://doi.org/10.18632/oncotarget.15641.
Yu, B., Liu, W., Yu, W.-M., Loh, M. L., Alter, S., Guvench, O., Mackerell, A. D., Tang, L.-D., & Qu, C.-K. (2013). Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies. Molecular Cancer Therapeutics, 12(9), 1738-1748. https://doi.org/10.1158/1535-7163.MCT-13-0049-T.
Yu, W.-M., Daino, H., Chen, J., Bunting, K. D., & Qu, C.-K. (2006). Effects of a leukemia-associated gain-of-function mutation of SHP-2 phosphatase on interleukin-3 signaling. Journal of Biological Chemistry, 281(9), 5426-5434. https://doi.org/10.1074/jbc.M507622200.
Yu, Z.-H., Xu, J., Walls, C. D., Chen, L., Zhang, S., Zhang, R., Wu, L., Wang, L., Liu, S., & Zhang, Z.-Y. (2013). Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. Journal of Biological Chemistry, 288(15), 10472-10482. https://doi.org/10.1074/jbc.M113.450023.
Yu, Z.-H., Zhang, R.-Y., Walls, C. D., Chen, L., Zhang, S., Wu, L., Liu, S., & Zhang, Z.-Y. (2014). Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry, 53(25), 4136-4151. https://doi.org/10.1021/bi5002695.
Yu, Z.-H., & Zhang, Z.-Y. (2018). Regulatory mechanisms and novel therapeutic targeting strategies for protein tyrosine phosphatases. Chemical Reviews, 118(3), 1069-1091. https://doi.org/10.1021/acs.chemrev.7b00105.
Yuan, L., Yu, W.-M., & Qu, C.-K. (2003). DNA damage-induced G2/M checkpoint in SV40 large T antigen-immortalized embryonic fibroblast cells requires SHP-2 tyrosine phosphatase. Journal of Biological Chemistry, 278(44), 42812-42820. https://doi.org/10.1074/jbc.M305075200.
Yuan, L., Yu, W.-M., Xu, M., & Qu, C.-K. (2005). SHP-2 phosphatase regulates DNA damage-induced apoptosis and G2/M arrest in catalytically dependent and independent manners, respectively. Journal of Biological Chemistry, 280(52), 42701-42706. https://doi.org/10.1074/jbc.M506768200.
Yuan, L., Yu, W.-M., Yuan, Z., Haudenschild, C. C., & Qu, C.-K. (2003). Role of SHP-2 tyrosine phosphatase in the DNA damage-induced cell death response. Journal of Biological Chemistry, 278(17), 15208-15216. https://doi.org/10.1074/jbc.M211327200.
Yuan, X., Bu, H., Zhou, J., Yang, C.-Y., & Zhang, H. (2020). Recent advances of SHP2 inhibitors in cancer therapy: Current development and clinical application. Journal of Medicinal Chemistry. https://doi.org/10.1021/acs.jmedchem.0c00249.
Zehender, A., Huang, J., Gyorfi, A.-H., Matei, A.-E., Trinh-Minh, T., Xu, X., Li, Y.-N., Chen, C.-W., Lin, J., Dees, C., Beyer, C., Gelse, K., Zhang, Z.-Y., Bergmann, C., Ramming, A., Birchmeier, W., Distler, O., Schett, G., & Distler, J. H. W. (2018). The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nature Communications, 9(1), 3259. https://doi.org/10.1038/s41467-018-05768-3.
Zeng, L.-F., Zhang, R.-Y., Yu, Z.-H., Li, S., Wu, L., Gunawan, A. M., Lane, B. S., Mali, R. S., Li, X., Chan, R. J., Kapur, R., Wells, C. D., & Zhang, Z.-Y. (2014). Therapeutic potential of targeting the oncogenic SHP2 phosphatase. Journal of Medicinal Chemistry, 57(15), 6594-6609. https://doi.org/10.1021/jm5006176.
Zhan, Y., & O'Rourke, D. M. (2004). SHP-2-dependent mitogen-activated protein kinase activation regulates EGFRVIII but not wild-type epidermal growth factor receptor phosphorylation and glioblastoma cell survival. Cancer Research, 64(22), 8292-8298. https://doi.org/10.1158/0008-5472.CAN-03-3143.
Zhang, J., Zhang, F., & Niu, R. (2015). Functions of Shp2 in cancer. Journal of Cellular and Molecular Medicine, 19(9), 2075-2083. https://doi.org/10.1111/jcmm.12618.
Zhang, K., Zhao, H., Ji, Z., Zhang, C., Zhou, P., Wang, L., Chen, Q., Wang, J., Zhang, P., Chen, Z., Zhu, H. H., & Gao, W.-Q. (2016). SHP2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene, 35(10), 1271-1282. https://doi.org/10.1038/onc.2015.184.
Zhang, R., Yu, R., Xu, Q., Li, X., Luo, J., Jiang, B., Wang, L., Guo, S., Wu, N., & Shi, D. (2017). Discovery and evaluation of the hybrid of bromophenol and saccharide as potent and selective protein tyrosine phosphatase 1B inhibitors. European Journal of Medicinal Chemistry, 134, 24-33. https://doi.org/10.1016/j.ejmech.2017.04.004.
Zhang, R.-Y., Yu, Z.-H., Zeng, L., Zhang, S., Bai, Y., Miao, J., Chen, L., Xie, J., & Zhang, Z.-Y. (2016). SHP2 phosphatase as a novel therapeutic target for melanoma treatment. Oncotarget, 7(45), 73817-73829. https://doi.org/10.18632/oncotarget.12074.
Zhang, X., He, Y., Liu, S., Yu, Z., Jiang, Z.-X., Yang, Z., Dong, Y., Nabinger, S. C., Wu, L., Gunawan, A. M., Wang, L., Chan, R. J., & Zhang, Z.-Y. (2010). Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). Journal of Medicinal Chemistry, 53(6), 2482-2493. https://doi.org/10.1021/jm901645u.
Zhang, Z.-Y. (2001). Protein tyrosine phosphatases: Prospects for therapeutics. Current Opinion in Chemical Biology, 5(4), 416-423. https://doi.org/10.1016/s1367-5931(00)00223-4.
Zhang, Z.-Y. (2003). Mechanistic studies on protein tyrosine phosphatases. Progress in Nucleic Acid Research and Molecular Biology, 73, 171-220. https://doi.org/10.1016/s0079-6603(03)01006-7.
Zhang, Z.-Y. (2017). Drugging the undruggable: Therapeutic potential of targeting protein tyrosine phosphatases. Accounts of Chemical Research, 50(1), 122-129. https://doi.org/10.1021/acs.accounts.6b00537.
Zhao, H., Martin, E., Matalkah, F., Shah, N., Ivanov, A., Ruppert, J. M., Lockman, P. R., & Agazie, Y. M. (2019). Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene, 38(13), 2275-2290. https://doi.org/10.1038/s41388-018-0574-8.
Zhao, M., Gua, W., Wu, Y., Yang, C., Zhong, L., Deng, G., Zhu, Y., Liu, W., Gu, Y., Lu, Y., Kong, L., Meng, X., Xu, Q., & Sun, Y. (2019). SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharmaceutica Sinica B, 9(2), 304-315. https://doi.org/10.1016/j.apsb.2018.08.009.
Zhao, R., Fu, X., Teng, L., Li, O., & Zhao, Z. J. (2003). Blocking the function of tyrosine phosphatase SHP-2 by targeting its Src homology 2 domains. Journal of Biological Chemistry, 278(44), 42893-42898. https://doi.org/10.1074/jbc.M306136200.
Zhen, X.-L., Yin, W.-H., Tian, X., Ma, Z.-J., Fan, S.-M., Han, J.-R., & Liu, S. (2015). Synthesis and biological evaluation of open-chain analogs of cyclic peptides as inhibitors of cellular Shp2 activity. Bioorganic & Medicinal Chemistry, 23(10), 2562-2567. https://doi.org/10.1016/j.bmc.2015.03.035.
Zheng, J., Huang, S., Huang, Y., Song, L., Yin, Y., Kong, W., Chen, X., & Ouyang, X. (2016). Expression and prognosis value of SHP2 in patients with pancreatic ductal adenocarcinoma. Tumor Biology, 37(6), 7853-7859. https://doi.org/10.1007/s13277-015-4675-5.
Zhou, X.-D., & Agazie, Y. M. (2008). Inhibition of SHP2 leads to mesenchymal to epithelial transition in breast cancer cells. Cell Death & Differentiation, 15(6), 988-996. https://doi.org/10.1038/cdd.2008.54.
Contributed Indexing:
Keywords: Cancer; SHP2; SHP2 inhibitors; computational studies; protein tyrosine phosphatase; structure-activity relationship (SAR)
Substance Nomenclature:
0 (Cytokines)
0 (Enzyme Inhibitors)
EC 3.1.3.48 (Protein Tyrosine Phosphatase, Non-Receptor Type 11)
Entry Date(s):
Date Created: 20201116 Date Completed: 20210922 Latest Revision: 20210922
Update Code:
20240105
DOI:
10.1111/cbdd.13807
PMID:
33191603
Czasopismo naukowe
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
(© 2020 John Wiley & Sons A/S.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies