Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Building a tRNA thermometer to estimate microbial adaptation to temperature.

Tytuł:
Building a tRNA thermometer to estimate microbial adaptation to temperature.
Autorzy:
Cimen E; Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.; Computational Intelligence and Optimization Laboratory, Industrial Engineering Department, Eskisehir Technical University, Eskisehir 26555, Turkey.
Jensen SE; School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA.
Buckler ES; Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.; School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA.; United States Department of Agriculture, Agricultural Research Service, Ithaca, NY 14850, USA.
Źródło:
Nucleic acids research [Nucleic Acids Res] 2020 Dec 02; Vol. 48 (21), pp. 12004-12015.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: 1992- : Oxford : Oxford University Press
Original Publication: London, Information Retrieval ltd.
MeSH Terms:
Genome, Archaeal*
Genome, Bacterial*
Adaptation, Physiological/*genetics
Archaea/*genetics
Bacteria/*genetics
RNA, Transfer/*chemistry
Anticodon/chemistry ; Anticodon/metabolism ; Archaea/classification ; Archaea/metabolism ; Bacteria/classification ; Bacteria/metabolism ; Base Pairing ; Base Sequence ; Computer Simulation ; Models, Genetic ; Neural Networks, Computer ; Nucleic Acid Conformation ; Phylogeny ; RNA Stability ; RNA, Transfer/genetics ; RNA, Transfer/metabolism ; Temperature ; Thermometers
References:
Biomolecules. 2017 Apr 04;7(2):. (PMID: 28375166)
Nucleic Acids Res. 2018 Jun 20;46(11):e69. (PMID: 29617928)
Life (Basel). 2013 Aug 07;3(3):482-5. (PMID: 25369817)
Nucleic Acids Res. 1997 Mar 1;25(5):955-64. (PMID: 9023104)
Microbiol Mol Biol Rev. 2001 Mar;65(1):1-43. (PMID: 11238984)
Nucleic Acids Res. 2020 Jan 8;48(D1):D256-D260. (PMID: 31624839)
ACS Synth Biol. 2019 Jun 21;8(6):1411-1420. (PMID: 31117361)
PLoS Comput Biol. 2015 May 22;11(5):e1004277. (PMID: 26000449)
Extremophiles. 2007 Jul;11(4):585-96. (PMID: 17429573)
Nucleic Acids Res. 2020 Jul 9;48(12):6906-6918. (PMID: 32459340)
Methods Mol Biol. 2019;1962:1-14. (PMID: 31020551)
Nucleic Acids Res. 2010 Jan;38(Database issue):D46-51. (PMID: 19910366)
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5542-5549. (PMID: 30842277)
Bioinformatics. 2019 Feb 1;35(3):526-528. (PMID: 30016406)
Front Genet. 2014 May 01;5:109. (PMID: 24822055)
BMC Genomics. 2012;13 Suppl 7:S3. (PMID: 23282160)
Bioinformatics. 2019 Sep 15;35(18):3224-3231. (PMID: 30689741)
Methods. 2016 Sep 1;107:34-41. (PMID: 27016142)
Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):35-48. (PMID: 23139145)
Nucleic Acids Res. 2014 Mar;42(5):3492-501. (PMID: 24369424)
Nucleic Acids Res. 2020 Jan 8;48(D1):D9-D16. (PMID: 31602479)
RNA. 2018 Mar;24(3):410-422. (PMID: 29259051)
PLoS Comput Biol. 2007 Jan 12;3(1):e5. (PMID: 17222055)
IUBMB Life. 2019 Aug;71(8):1126-1140. (PMID: 30932315)
RNA Biol. 2014;11(12):1619-29. (PMID: 25611331)
BMC Evol Biol. 2010 Aug 31;10:263. (PMID: 20807394)
Nucleic Acids Res. 1996 Mar 15;24(6):1073-9. (PMID: 8604341)
Sci Rep. 2018 Jan 22;8(1):1313. (PMID: 29358630)
Bioinformatics. 2019 Sep 1;35(17):2899-2906. (PMID: 30649185)
Bioinformatics. 2016 Jun 15;32(12):i121-i127. (PMID: 27307608)
Science. 1965 Mar 19;147(3664):1462-5. (PMID: 14263761)
Protein Sci. 2012 Nov;21(11):1746-53. (PMID: 23001966)
Bioinformatics. 2015 Oct 15;31(20):3377-9. (PMID: 26099263)
Substance Nomenclature:
0 (Anticodon)
9014-25-9 (RNA, Transfer)
Entry Date(s):
Date Created: 20201116 Date Completed: 20201222 Latest Revision: 20210110
Update Code:
20240105
PubMed Central ID:
PMC7708079
DOI:
10.1093/nar/gkaa1030
PMID:
33196821
Czasopismo naukowe
Because ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a 'tRNA thermometer' model using tRNA sequence to predict OGT. We used sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum ${r^2}$ of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps and widening the scope of valid downstream analyses.
(Published by Oxford University Press on behalf of Nucleic Acids Research 2020.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies