Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep.

Tytuł:
Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep.
Autorzy:
Dong X; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada. .
Rattray JE; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Campbell DC; Geological Survey of Canada-Atlantic, Dartmouth, NS, B3B 1A6, Canada.
Webb J; Applied Petroleum Technology (Canada), Calgary, AB, T2N 1Z6, Canada.
Chakraborty A; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Adebayo O; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Matthews S; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Li C; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Fowler M; Applied Petroleum Technology (Canada), Calgary, AB, T2N 1Z6, Canada.
Morrison NM; Nova Scotia Department of Energy and Mines, Halifax, NS, B2Y 4A2, Canada.
MacDonald A; Nova Scotia Department of Energy and Mines, Halifax, NS, B2Y 4A2, Canada.
Groves RA; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Lewis IA; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Wang SH; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Mayumi D; Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8567, Japan.
Greening C; School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
Hubert CRJ; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada. .
Źródło:
Nature communications [Nat Commun] 2020 Nov 17; Vol. 11 (1), pp. 5825. Date of Electronic Publication: 2020 Nov 17.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Geologic Sediments/*microbiology
Hydrocarbons/*metabolism
Metagenome/*physiology
Adaptation, Biological ; Alkanes/chemistry ; Alkanes/metabolism ; Anaerobiosis ; Biodegradation, Environmental ; Biodiversity ; Chloroflexi/genetics ; Chloroflexi/metabolism ; Deltaproteobacteria/genetics ; Deltaproteobacteria/metabolism ; Genome, Microbial ; Marine Biology ; Metagenome/genetics ; Methane/metabolism ; Nova Scotia ; Oceans and Seas ; Phylogeny ; RNA, Ribosomal, 16S
References:
Bioinformatics. 2010 Jul 1;26(13):1608-15. (PMID: 20472543)
FEMS Microbiol Ecol. 2013 Jan;83(1):214-31. (PMID: 22882187)
Nat Microbiol. 2019 Apr;4(4):595-602. (PMID: 30833728)
ISME J. 2019 May;13(5):1269-1279. (PMID: 30651609)
Mol Biol Evol. 2015 Jan;32(1):268-74. (PMID: 25371430)
Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203. (PMID: 27899674)
PeerJ. 2015 Oct 08;3:e1319. (PMID: 26500826)
ISME J. 2013 May;7(5):885-95. (PMID: 23254512)
Nucleic Acids Res. 2013 Jan 7;41(1):e1. (PMID: 22933715)
Front Microbiol. 2015 Dec 17;6:1414. (PMID: 26733961)
Nat Commun. 2019 Apr 23;10(1):1822. (PMID: 31015394)
Environ Microbiol. 2012 Jan;14(1):101-13. (PMID: 21651686)
Anal Chem. 2010 Dec 1;82(23):9818-26. (PMID: 21049934)
Genome Biol. 2009;10(3):R25. (PMID: 19261174)
ISME J. 2019 Jan;13(1):227-231. (PMID: 30116037)
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2940-2945. (PMID: 28242677)
Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8. (PMID: 24293649)
Nat Biotechnol. 2016 Dec;34(12):1256-1263. (PMID: 27819664)
mBio. 2019 Aug 20;10(4):. (PMID: 31431553)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
Nat Commun. 2018 Nov 27;9(1):4999. (PMID: 30479325)
ISME J. 2014 Dec;8(12):2353-6. (PMID: 24865771)
ISME J. 2017 Dec;11(12):2864-2868. (PMID: 28742071)
Appl Environ Microbiol. 2006 Nov;72(11):7218-30. (PMID: 16980428)
ISME J. 2019 Oct;13(10):2617-2632. (PMID: 31243332)
Bioinformatics. 2012 Jul 15;28(14):1823-9. (PMID: 22556368)
Environ Microbiol Rep. 2021 Apr;13(2):185-194. (PMID: 33462984)
Nat Commun. 2018 Feb 28;9(1):870. (PMID: 29491419)
Environ Microbiol. 2011 Nov;13(11):2957-75. (PMID: 21914097)
PLoS One. 2010 Nov 19;5(11):e14072. (PMID: 21124915)
Methods. 2016 Jun 1;102:3-11. (PMID: 27012178)
Environ Microbiol. 2011 Sep;13(9):2548-64. (PMID: 21806748)
ISME J. 2015 Sep;9(9):2028-45. (PMID: 25734684)
mSystems. 2020 Oct 27;5(5):. (PMID: 33109753)
Genome Res. 2017 May;27(5):824-834. (PMID: 28298430)
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4015-20. (PMID: 25775520)
ISME J. 2018 Jun;12(7):1861-1866. (PMID: 29523891)
Microbiome. 2017 Aug 23;5(1):106. (PMID: 28835260)
mBio. 2020 Apr 21;11(2):. (PMID: 32317322)
Nature. 2007 Oct 18;449(7164):898-901. (PMID: 17882164)
Front Microbiol. 2017 Aug 03;8:1461. (PMID: 28824589)
Nat Commun. 2019 Apr 18;10(1):1816. (PMID: 31000700)
Front Genet. 2019 Oct 15;10:999. (PMID: 31681429)
Nature. 2016 Nov 17;539(7629):396-401. (PMID: 27749816)
Nature. 2019 Apr;568(7750):108-111. (PMID: 30918404)
ISME J. 2019 Feb;13(2):250-262. (PMID: 30194429)
ISME J. 2014 Oct;8(10):2029-44. (PMID: 24722631)
Genome Res. 2015 Jul;25(7):1043-55. (PMID: 25977477)
J Mol Microbiol Biotechnol. 2016;26(1-3):5-28. (PMID: 26960061)
Nat Methods. 2015 Jan;12(1):59-60. (PMID: 25402007)
mSystems. 2019 Feb 26;4(1):. (PMID: 30834326)
Bioinformatics. 2009 Aug 1;25(15):1972-3. (PMID: 19505945)
Nat Microbiol. 2019 Jun;4(6):1014-1023. (PMID: 30858573)
ISME J. 2020 Apr;14(4):1030-1041. (PMID: 31988473)
Sci Rep. 2016 Sep 27;6:34212. (PMID: 27670643)
Nature. 2018 Aug;560(7716):49-54. (PMID: 30013118)
BMC Bioinformatics. 2010 Mar 08;11:119. (PMID: 20211023)
Nat Rev Microbiol. 2019 Apr;17(4):219-232. (PMID: 30664670)
ISME J. 2013 Aug;7(8):1595-608. (PMID: 23446836)
Mol Biol Evol. 2016 Jul;33(7):1870-4. (PMID: 27004904)
Nature. 1999 Sep 16;401(6750):266-9. (PMID: 10499582)
Nat Microbiol. 2019 Apr;4(4):603-613. (PMID: 30833729)
Bioinformatics. 2019 Nov 15;:. (PMID: 31730192)
Microbiome. 2018 Sep 15;6(1):158. (PMID: 30219103)
ISME J. 2018 Aug;12(8):2039-2050. (PMID: 29849169)
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
Science. 2004 Sep 3;305(5689):1457-62. (PMID: 15353801)
Environ Microbiol. 2021 Feb;23(2):530-541. (PMID: 32367670)
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101. (PMID: 29771380)
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. (PMID: 24270786)
Substance Nomenclature:
0 (Alkanes)
0 (Hydrocarbons)
0 (RNA, Ribosomal, 16S)
OP0UW79H66 (Methane)
Entry Date(s):
Date Created: 20201118 Date Completed: 20201216 Latest Revision: 20231112
Update Code:
20240105
PubMed Central ID:
PMC7673041
DOI:
10.1038/s41467-020-19648-2
PMID:
33203858
Czasopismo naukowe
At marine cold seeps, gaseous and liquid hydrocarbons migrate from deep subsurface origins to the sediment-water interface. Cold seep sediments are known to host taxonomically diverse microorganisms, but little is known about their metabolic potential and depth distribution in relation to hydrocarbon and electron acceptor availability. Here we combined geophysical, geochemical, metagenomic and metabolomic measurements to profile microbial activities at a newly discovered cold seep in the deep sea. Metagenomic profiling revealed compositional and functional differentiation between near-surface sediments and deeper subsurface layers. In both sulfate-rich and sulfate-depleted depths, various archaeal and bacterial community members are actively oxidizing thermogenic hydrocarbons anaerobically. Depth distributions of hydrocarbon-oxidizing archaea revealed that they are not necessarily associated with sulfate reduction, which is especially surprising for anaerobic ethane and butane oxidizers. Overall, these findings link subseafloor microbiomes to various biochemical mechanisms for the anaerobic degradation of deeply-sourced thermogenic hydrocarbons.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies