Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways.

Tytuł:
Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways.
Autorzy:
Hamilton KL; Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
Sheehan SA; Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
Retzbach EP; Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
Timmerman CA; Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
Gianneschi GB; Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
Tempera PJ; Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
Balachandran P; National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
Goldberg GS; Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA. .
Źródło:
Journal of cancer research and clinical oncology [J Cancer Res Clin Oncol] 2021 Feb; Vol. 147 (2), pp. 445-457. Date of Electronic Publication: 2020 Nov 17.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin ; New York : Springer-Verlag.
MeSH Terms:
Gene Expression Regulation, Neoplastic/*drug effects
Maackia/*chemistry
Mouth Neoplasms/*drug therapy
Plant Lectins/*pharmacology
Squamous Cell Carcinoma of Head and Neck/*drug therapy
Cell Movement/drug effects ; Humans ; Mouth Neoplasms/metabolism ; Mouth Neoplasms/pathology ; Plant Lectins/therapeutic use ; SOXB1 Transcription Factors/genetics ; Signal Transduction/drug effects ; Smad Proteins/genetics ; Squamous Cell Carcinoma of Head and Neck/metabolism ; Squamous Cell Carcinoma of Head and Neck/pathology ; Transcription, Genetic/drug effects ; Wnt Signaling Pathway/drug effects
References:
Alexander DB et al (2004) Normal cells control the growth of neighboring transformed cells independent of gap junctional communication and SRC activity. Can Res 64:1347–1358. (PMID: 10.1158/0008-5472.CAN-03-2558)
Alfano C, Faggiano S, Pastore A (2016) The ball and chain of polyubiquitin structures. Trends Biochem Sci 41:371–385. https://doi.org/10.1016/j.tibs.2016.01.006. (PMID: 10.1016/j.tibs.2016.01.00626899455)
Andrejeva J, Young DF, Goodbourn S, Randall RE (2002) Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respectively: consequences for virus replication in the presence of alpha/beta and gamma interferons. J Virol 76:2159–2167. https://doi.org/10.1128/jvi.76.5.2159-2167.2002. (PMID: 10.1128/jvi.76.5.2159-2167.200211836393153821)
Beloborodova EI, Gaisaev RO, Saratikov AS (2004) Effect of the phytohepatoprotective agent maxar on the hepatic morphofunctional status in patients with chronic hepatitis. Klin Med 82:39–42.
Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA (2018) Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/beta-catenin signaling. Development. https://doi.org/10.1242/dev.160382. (PMID: 10.1242/dev.16038229361573)
Carpintero-Fernandez P, Varela-Eirin M, Lacetera A, Gago-Fuentes R, Fonseca E, Martin-Santamaria S, Mayan MD (2020) New therapeutic strategies for osteoarthritis by targeting sialic acid receptors. Biomolecules 10:21. (PMID: 10.3390/biom10040637)
Chang CC, Zhang J, Lombardi L, Neri A, Dalla-Favera R (1994) Mechanism of expression and role in transcriptional control of the proto-oncogene NFKB-2/LYT-10. Oncogene 9:923–933. (PMID: 8108136)
Chou MY, Hu FW, Yu CH, Yu CC (2015) Sox2 expression involvement in the oncogenicity and radiochemoresistance of oral cancer stem cells. Oral Oncol 51:31–39. https://doi.org/10.1016/j.oraloncology.2014.10.002. (PMID: 10.1016/j.oraloncology.2014.10.00225456004)
Chung JH, Jung HR, Jung AR, Lee YC, Kong M, Lee JS, Eun YG (2018) SOX2 activation predicts prognosis in patients with head and neck squamous cell carcinoma. Sci Rep 8:1677. https://doi.org/10.1038/s41598-018-20086-w. (PMID: 10.1038/s41598-018-20086-w293742365785960)
D’Andrea AD (2018) Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst) 71:172–176. https://doi.org/10.1016/j.dnarep.2018.08.021. (PMID: 10.1016/j.dnarep.2018.08.021)
D’Cruz AK, Vaish R, Dhar H (2018) Oral cancers: current status. Oral Oncol 87:64–69. https://doi.org/10.1016/j.oraloncology.2018.10.013. (PMID: 10.1016/j.oraloncology.2018.10.01330527245)
Fedoreev SA et al (2010) Maksar: a preparation based on amur maackia. Pharma Chem J 38:605–610. (PMID: 10.1007/s11094-005-0039-6)
Harada K, Ferdous T, Ueyama Y (2014) Establishment of 5-fluorouracil-resistant oral squamous cell carcinoma cell lines with epithelial to mesenchymal transition changes. Int J Oncol 44:1302–1308. https://doi.org/10.3892/ijo.2014.2270. (PMID: 10.3892/ijo.2014.227024452635)
Hasan SS, Ashraf GM, Banu N (2007) Galectins - potential targets for cancer therapy. Cancer Lett 253:25–33. (PMID: 10.1016/j.canlet.2006.11.030)
Hertrampf K, Pritzkuleit R, Baumann E, Wiltfang J, Wenz HJ, Waldmann A (2020) Oral cancer awareness campaign in Northern Germany: first positive trends in incidence and tumour stages. J Cancer Res Clin Oncol 146:2489–2496. https://doi.org/10.1007/s00432-020-03305-8. (PMID: 10.1007/s00432-020-03305-8326177037467915)
Honma M, Shibuya T, Fujii M, Iinuma S, Saito N, Kishibe M, Ishida-Yamamoto A (2017) Maackia amurensis seed lectin can suppress IL-22induced hyperproliferative reconstituted epidermis. J Dermatal Sci 86:46. (PMID: 10.1016/j.jdermsci.2017.02.135)
Hsu LS et al (2017) KLF6 inhibited oral cancer migration and invasion via down-regulation of mesenchymal markers and inhibition of MMP-9 activities. Int J Med Sci 14:530–535. https://doi.org/10.7150/ijms.19024. (PMID: 10.7150/ijms.19024286382685479121)
Huang TH et al (2009) Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 284:18515–18524. https://doi.org/10.1074/jbc.M109.006676. (PMID: 10.1074/jbc.M109.006676194199542709372)
Ian’kova VI, Ivanova IL, Fedoreev SA, Kulesh NI (2002) Antioxidant activity of the hepatoprotector maxar in experimental diabetes. Eksperimental’naia i klinicheskaia farmakologiia 65:33–36. (PMID: 12452131)
Imberty A, Gautier C, Lescar J, Perez S, Wyns L, Loris R (2000) An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. J Biol Chem 275:17541–17548. (PMID: 10.1074/jbc.M000560200)
Kaneko MK et al (2017) ChLpMab-23: cancer-specific human-mouse chimeric anti-podoplanin antibody exhibits antitumor activity via antibody-dependent cellular cytotoxicity. Monoclon Antib Immunodiagn Immunother. https://doi.org/10.1089/mab.2017.0014. (PMID: 10.1089/mab.2017.0014292567166975130)
Krishnan H, Goldberg GS (2015) Contact normalization or escape from the matrix. In: Kandous M (ed) Intercellular communication and cancer. Springer-Verlag, Heidelberg, pp 297–342. (PMID: 10.1007/978-94-017-7380-5_12)
Krishnan H et al (2013) Serines in the intracellular tail of podoplanin (PDPN) regulate cell motility. J Biol Chem 288:12215–12221. https://doi.org/10.1074/jbc.C112.446823. (PMID: 10.1074/jbc.C112.446823235300513636905)
Krishnan H, Retzbach EP, Ramirez MI, Liu T, Li H, Miller WT, Goldberg GS (2015) PKA and CDK5 can phosphorylate specific serines on the intracellular domain of podoplanin (PDPN) to inhibit cell motility. Exp Cell Res 335:115–122. https://doi.org/10.1016/j.yexcr.2015.04.019. (PMID: 10.1016/j.yexcr.2015.04.019259595094556139)
Krishnan H et al (2018) Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci 109:1292–1299. https://doi.org/10.1111/cas.13580. (PMID: 10.1111/cas.13580295755295980289)
Krishnan H, Miller WT, Blanco FJ, Goldberg GS (2019) Src and podoplanin forge a path to destruction. Drug Discov Today 24:241–249. https://doi.org/10.1016/j.drudis.2018.07.009. (PMID: 10.1016/j.drudis.2018.07.00930077780)
Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356. https://doi.org/10.1016/s0092-8674(00)80215-9. (PMID: 10.1016/s0092-8674(00)80215-99150134)
Lee CK, Bluyssen HA, Levy DE (1997) Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J Biol Chem 272:21872–21877. https://doi.org/10.1074/jbc.272.35.21872. (PMID: 10.1074/jbc.272.35.218729268319)
Li YY, Zhou CX, Gao Y (2018) Interaction between oral squamous cell carcinoma cells and fibroblasts through TGF-beta1 mediated by podoplanin. Exp Cell Res 369:43–53. https://doi.org/10.1016/j.yexcr.2018.04.029. (PMID: 10.1016/j.yexcr.2018.04.02929719198)
Liu J et al (2013) Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA 110:20224–20229. https://doi.org/10.1073/pnas.1314239110. (PMID: 10.1073/pnas.131423911024277854)
Liu Y, Cui L, Huang J, Ji EH, Chen W, Messadi D, Hu S (2016) SOX4 promotes progression in OLP-associated squamous cell carcinoma. J Cancer 7:1534–1540. https://doi.org/10.7150/jca.15689. (PMID: 10.7150/jca.15689274715694964137)
Liu B, Chen W, Cao G, Dong Z, Xu J, Luo T, Zhang S (2017) MicroRNA-27b inhibits cell proliferation in oral squamous cell carcinoma by targeting FZD7 and Wnt signaling pathway. Archiv Oral Biol 83:92–96. https://doi.org/10.1016/j.archoralbio.2017.07.009. (PMID: 10.1016/j.archoralbio.2017.07.009)
Lu P et al (2016) Malignant gliomas induce and exploit astrocytic mesenchymal-like transition by activating canonical Wnt/beta-catenin signaling. Med Oncol 33:66. https://doi.org/10.1007/s12032-016-0778-0. (PMID: 10.1007/s12032-016-0778-027236327)
Morales J et al (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24:15–28. https://doi.org/10.1615/critreveukaryotgeneexpr.2013006875. (PMID: 10.1615/critreveukaryotgeneexpr.2013006875245796674806654)
Morgan RK, Batra H, Gaerig VC, Hockings J, Brooks TA (2016) Identification and characterization of a new G-quadruplex forming region within the kRAS promoter as a transcriptional regulator. Biochim Biophys Acta 1859:235–245. https://doi.org/10.1016/j.bbagrm.2015.11.004. (PMID: 10.1016/j.bbagrm.2015.11.00426597160)
NCT01351103 (2020) A Study of LGK974 in Patients With Malignancies Dependent on Wnt Ligands Clinicaltrialsgov.
NCT03153982 (2020) Ruxolitinib in Operable Head and Neck Cancer Clinicaltrialsgov.
NCT04188665 (2020) Using MASL to Combat Oral Cancer Clinicaltrialsgov.
NCT04247282 (2020) Anti-PD-L1/TGF-beta Trap (M7824) Alone and in Combination With TriAd Vaccine and N-803 for Resectable Head and Neck Squamous Cell Carcinoma Not Associated With Human Papillomavirus Infection Clinicaltrialsgov.
Ochoa-Alvarez JA et al (2012) Plant lectin can target receptors containing sialic Acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PLoS ONE 7:e41845. (PMID: 10.1371/journal.pone.0041845)
Ochoa-Alvarez JA et al (2015) Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms. Oncotarget 6:9045–9060. (PMID: 10.18632/oncotarget.3515)
O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK–STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328. https://doi.org/10.1146/annurev-med-051113-024537. (PMID: 10.1146/annurev-med-051113-024537255876545634336)
Pan X et al (2009) Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA 106:3788–3793. https://doi.org/10.1073/pnas.0810147106. (PMID: 10.1073/pnas.081014710619234109)
Pang X, Tang YL, Liang XH (2018) Transforming growth factor-beta signaling in head and neck squamous cell carcinoma: Insights into cellular responses. Oncol Lett 16:4799–4806. https://doi.org/10.3892/ol.2018.9319. (PMID: 10.3892/ol.2018.9319302505446144927)
Peng Q, Deng Z, Pan H, Gu L, Liu O, Tang Z (2018) Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol Lett 15:1379–1388. https://doi.org/10.3892/ol.2017.7491. (PMID: 10.3892/ol.2017.749129434828)
Peng X et al (2019) Co-targeting PI3K/Akt and MAPK/ERK pathways leads to an enhanced antitumor effect on human hypopharyngeal squamous cell carcinoma. J Cancer Res Clin Oncol 145:2921–2936. https://doi.org/10.1007/s00432-019-03047-2. (PMID: 10.1007/s00432-019-03047-231620898)
Pryme IF, Bardocz S, Pusztai A, Ewen SW (2006) Suppression of growth of tumour cell lines in vitro and tumours in vivo by mistletoe lectins. Histol Histopathol 21:285–299. (PMID: 16372250)
Pusztai A, Bardocz S, Ewen SW (2008) Uses of plant lectins in bioscience and biomedicine. Front Biosci 13:1130–1140. (PMID: 10.2741/2750)
Quintanilla M, Montero-Montero L, Renart J, Martin-Villar E (2019) Podoplanin in inflammation and cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20030707. (PMID: 10.3390/ijms20030707316530556862446)
Ren ZH, Zhang CP, Ji T (2016) Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncol Lett 11:1973–1979. https://doi.org/10.3892/ol.2016.4207. (PMID: 10.3892/ol.2016.4207269981094774454)
Renart J, Carrasco-Ramirez P, Fernandez-Munoz B, Martin-Villar E, Montero L, Yurrita MM, Quintanilla M (2015) New insights into the role of podoplanin in epithelial-mesenchymal transition. Int Rev Cell Mol Biol 317:185–239. https://doi.org/10.1016/bs.ircmb.2015.01.009. (PMID: 10.1016/bs.ircmb.2015.01.00926008786)
Retzbach EP et al (2018) Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol 78:126–136. https://doi.org/10.1016/j.oraloncology.2018.01.011. (PMID: 10.1016/j.oraloncology.2018.01.01129496040)
Saatcioglu F, Perry DJ, Pasco DS, Fagan JB (1990) Multiple DNA-binding factors interact with overlapping specificities at the aryl hydrocarbon response element of the cytochrome P450IA1 gene. Mol Cell Biol 10:6408–6416. https://doi.org/10.1128/mcb.10.12.6408. (PMID: 10.1128/mcb.10.12.64082174107362917)
Saratikov AS, Livshits NS, Burchenkova FI, Kadychagova NG, Akhmedzhanov RR, Bashirova LV (2003) Preclinical study of maxar safety. Eksperimental’naia i klinicheskaia farmakologiia 66:53–55. (PMID: 14743714)
Schaefer T, Lengerke C (2020) SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene 39:278–292. https://doi.org/10.1038/s41388-019-0997-x. (PMID: 10.1038/s41388-019-0997-x31477842)
Sen M et al (2015) JAK kinase inhibition abrogates STAT3 activation and head and neck squamous cell carcinoma tumor growth. Neoplasia 17:256–264. https://doi.org/10.1016/j.neo.2015.01.003. (PMID: 10.1016/j.neo.2015.01.003258100104372647)
Shao S, Cui D, Ma C, Chen P, Zhou B, Tao R, Wang J (2020) Transcriptome profiling of tolerogenic dendritic cells conditioned with dual mTOR kinase inhibitor, AZD8055. Int Immunopharmacol 81:106241. https://doi.org/10.1016/j.intimp.2020.106241. (PMID: 10.1016/j.intimp.2020.10624132058927)
Shim M, Bae JY, Lee YJ, Ahn MJ (2014) Tectoridin from Maackia amurensis modulates both estrogen and thyroid receptors. Phytomed Int J Phytother Phytopharmacol 21:602–606. https://doi.org/10.1016/j.phymed.2013.10.022. (PMID: 10.1016/j.phymed.2013.10.022)
Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590. (PMID: 10.3322/caac.215903191290231912902)
Sikorska J, Gawel D, Domek H, Rudzinska M, Czarnocka B (2019) Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases. BMC Cancer 19:85. https://doi.org/10.1186/s12885-018-5239-z. (PMID: 10.1186/s12885-018-5239-z306547686337816)
Subbaramaiah K, Bulic P, Lin Y, Dannenberg AJ, Pasco DS (2001) Development and use of a gene promoter-based screen to identify novel inhibitors of cyclooxygenase-2 transcription. J Biomol Screen 6:101–110. https://doi.org/10.1177/108705710100600206. (PMID: 10.1177/10870571010060020611689104)
Takayama S, Hatori M, Kurihara Y, Kinugasa Y, Shirota T, Shintani S (2009) Inhibition of TGF-beta1 suppresses motility and invasiveness of oral squamous cell carcinoma cell lines via modulation of integrins and down-regulation of matrix-metalloproteinases. Oncol Rep 21:205–210. (PMID: 19082463)
Tang M et al (2020) Transcriptome analysis of tongue cancer based on highthroughput sequencing. Oncol Rep 43:2004–2016. https://doi.org/10.3892/or.2020.7560. (PMID: 10.3892/or.2020.7560322366207160550)
Thomas SJ, Snowden JA, Zeidler MP, Danson SJ (2015) The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 113:365–371. https://doi.org/10.1038/bjc.2015.233. (PMID: 10.1038/bjc.2015.233261514554522639)
Twardziok M et al (2017) Transcriptomic and proteomic insight into the effects of a defined European mistletoe extract in Ewing sarcoma cells reveals cellular stress responses. BMC Complement Altern Med 17:237. https://doi.org/10.1186/s12906-017-1715-2. (PMID: 10.1186/s12906-017-1715-2284545385410041)
Van Damme EJ, Van Leuven F, Peumans WJ (1997) Isolation, characterization and molecular cloning of the bark lectins from Maackia amurensis. Glycoconj J 14:449–456. (PMID: 10.1023/A:1018595300863)
Wang YH, Li JS, Jiang ZR, Kubo H, Higashiyama K, Ohmiya S (2000) Lupin alkaloids from Chinese Maackia amurensis. Chem Pharm Bull (Tokyo) 48:641–645. (PMID: 10.1248/cpb.48.641)
Wang R et al (2019) Integrative analysis of gene expression profiles reveals distinct molecular characteristics in oral tongue squamous cell carcinoma. Oncol Lett 17:2377–2387. https://doi.org/10.3892/ol.2018.9866. (PMID: 10.3892/ol.2018.986630675303)
Yamanouchi R, Harada K, Ferdous T, Ueyama Y (2018) Low carbonyl reductase 1 expression is associated with poor prognosis in patients with oral squamous cell carcinoma. Mol Clin Oncol 8:400–406. https://doi.org/10.3892/mco.2018.1548. (PMID: 10.3892/mco.2018.1548294568455795658)
Yau T, Dan X, Ng CC, Ng TB (2015) Lectins with potential for anti-cancer therapy. Molecules 20:3791–3810. https://doi.org/10.3390/molecules20033791. (PMID: 10.3390/molecules20033791257303886272365)
Yoon TM et al (2015) SOX4 expression is associated with treatment failure and chemoradioresistance in oral squamous cell carcinoma. BMC Cancer 15:888. https://doi.org/10.1186/s12885-015-1875-8. (PMID: 10.1186/s12885-015-1875-8265551934641419)
Zaki MA et al (2013) Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3’,5’-tetramethoxystilbene isolated from Eugenia rigida. J Nat Prod 76:679–684. https://doi.org/10.1021/np300893n. (PMID: 10.1021/np300893n23547843)
Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA 98:974–979. https://doi.org/10.1073/pnas.98.3.974. (PMID: 10.1073/pnas.98.3.97411158580)
Grant Information:
R15 CA235347 United States CA NCI NIH HHS; CA235347 United States CA NCI NIH HHS
Contributed Indexing:
Keywords: Chemotherapy; JAK–STAT; Lectin; Maackia amurensis; Oral cancer; Oral squamous cell carcinoma; Podoplanin; SMAD; Tgfβ
Substance Nomenclature:
0 (Plant Lectins)
0 (SOX2 protein, human)
0 (SOXB1 Transcription Factors)
0 (Smad Proteins)
Entry Date(s):
Date Created: 20201118 Date Completed: 20210201 Latest Revision: 20220202
Update Code:
20240105
PubMed Central ID:
PMC7855468
DOI:
10.1007/s00432-020-03456-8
PMID:
33205348
Czasopismo naukowe
Purpose: Oral cancer causes over 120,000 deaths annually and affects the quality of life for survivors. Over 90% of oral cancers are derived from oral squamous cell carcinoma cells (OSCCs) which are generally resistant to standard cytotoxic chemotherapy agents. OSCC cells often exhibit increased TGFβ and PDPN receptor activity compared to nontransformed oral epithelial cells. Maackia amurensis seed lectin (MASL) can target the PDPN receptor and has been identified as a novel agent that can be used to treat oral cancer. However, mechanisms by which MASL inhibits OSCC progression are not yet clearly defined.
Methods: Here, we performed cell migration and cytotoxicity assays to assess the effects of MASL on OSCC motility and viability at physiologically relevant concentrations. We then performed comprehensive transcriptome analysis combined with transcription factor reporter assays to investigate the how MASL affects OSCC gene expression at these concentration. Key data were then confirmed by western blotting to evaluate the effects of MASL on gene expression and kinase signaling activity at the protein level.
Results: MASL significantly affected the expression of about 27% of approximately 15,000 genes found to be expressed by HSC-2 cells used to model OSCC cells in this study. These genes affected by MASL include members of the TGFβ-SMAD, JAK-STAT, and Wnt-βCTN signaling pathways. In particular, MASL decreased expression of PDPN, SOX2, and SMAD5 at the RNA and protein levels. MASL also inhibited SMAD and MAPK activity, and exhibited potential for combination therapy with doxorubicin and 5-fluorouracil.
Conclusions: Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFβ-SMAD, and Wnt-βCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies