Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Precision Medicine: Academic dreaming or clinical reality?

Tytuł:
Precision Medicine: Academic dreaming or clinical reality?
Autorzy:
Josephson CB; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.; Centre for Health Informatics, University of Calgary, Calgary, AB, Canada.
Wiebe S; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.; Clinical Research Unit, University of Calgary, Calgary, AB, Canada.
Źródło:
Epilepsia [Epilepsia] 2021 Mar; Vol. 62 Suppl 2, pp. S78-S89. Date of Electronic Publication: 2020 Nov 17.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: Malden, MA : Blackwell Science
Original Publication: Copenhagen : Munskgaard
MeSH Terms:
Algorithms*
Data Analysis*
Electronic Health Records*/trends
Data Collection/*methods
Epilepsy/*therapy
Precision Medicine/*methods
Data Collection/trends ; Epilepsy/diagnosis ; Humans ; Precision Medicine/trends
References:
Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75(3):279-86.
Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015;313(3):285-93.
Wiebe S, Jette N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol. 2012;8(12):669-77.
Atkinson MJ, Sinha A, Hass SL, Colman SS, Kumar RN, Brod M, et al. Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health Qual Life Outcomes. 2004;2(1):12.
The microbiota-gut-brain axis [Internet]. [cited 2020]. Available from https://www.nature.com/articles/d42859-019-00021-3.
Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;174(2):497.
Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery. Nat Rev Neurol. 2019;15(10):594-606.
Getting Personal. The Economist [Internet]. [cited 2020];. Available from https://www.economist.com/special-report/2009/04/18/getting-personal.
National Institutes of Health GH. What is the Precision Medicine Initiative? [Internet]. Genetics Home Reference. [cited 2020]. Available from https://ghr.nlm.nih.gov/primer/precisionmedicine/initiative.
McAlister FA, Laupacis A, Armstrong PW. Finding the right balance between precision medicine and personalized care. CMAJ Can Med Assoc J J Assoc Medicale Can. 2017;189(33):E1065-8.
National Institutes of Health. What is the difference between precision medicine and personalized medicine? What about pharmacogenomics? [Internet]. Genetics Home Reference. [cited 2020]. Available from https://ghr.nlm.nih.gov/primer/precisionmedicine/precisionvspersonalized.
Precision Public Health and Precision Medicine: Two Peas in a Pod | | Blogs | CDC [Internet]. [cited 2020]. Available from https://blogs.cdc.gov/genomics/2015/03/02/precision-public/.
Prosperi M, Min JS, Bian J, Modave F. Big data hurdles in precision medicine and precision public health. BMC Med Inf Decis Mak. 2018;18(1):139.
Bobashev G. myEpi. Epidemiology of One. Front Public Health. 2014;2:97. Available from http://journal.frontiersin.org/article/10.3389/fpubh.2014.00097/abstract.
Breitling R. What is systems biology? Front Physiol. 2010;1:9. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059953/.
Mahoney JM, Mills JD, Muhlebner A, Noebels J, Potschka H, Simonato M, et al. 2017 WONOEP appraisal: studying epilepsy as a network disease using systems biology approaches. Epilepsia. 2019;60(6):1045-53.
Wu HC, Dachet F, Ghoddoussi F, Bagla S, Fuerst D, Stanley JA, et al. Altered metabolomic-genomic signature: a potential noninvasive biomarker of epilepsy. Epilepsia. 2017;58(9):1626-36.
Kim LG, Johnson TL, Marson AG, Chadwick DW. Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial. Lancet Neurol. 2006;5(4):317-22.
Josephson CB, Engbers JDT, Jette N, Patten SB, Singh S, Sajobi TT, et al. Prediction tools for psychiatric adverse effects after levetiracetam prescription. JAMA Neurol. 2019;76(4):440-6.
Jehi L, Yardi R, Chagin K, Tassi L, Russo GL, Worrell G, et al. Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: a retrospective analysis. Lancet Neurol. 2015;14(3):283-90.
Lamberink HJ, Otte WM, Geerts AT, Pavlovic M, Ramos-Lizana J, Marson AG, et al. Individualised prediction model of seizure recurrence and long-term outcomes after withdrawal of antiepileptic drugs in seizure-free patients: a systematic review and individual participant data meta-analysis. Lancet Neurol. 2017;16(7):523-31.
Fujitsu's Arm-powered supercomputer beats US, China to take world speed crown [Internet]. Data Center Knowledge. 2020 [cited 2020]. Available from https://www.bloomberg.com/news/articles/2020-06-23/fujitsu-s-arm-powered-supercomputer-claims-world-speed-crown.
Cowan N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci. 2001;24(1):87-114.
Obermeyer Z, Lee TH. Lost in thought - the limits of the human mind and the future of medicine. N Engl J Med. 2017;377(13):1209-11.
Darcy AM, Louie AK, Roberts L. Machine learning and the profession of medicine. JAMA. 2016;315(6):551-2.
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314-9.
Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311-8.
Steyerberg EW, van der Ploeg T, Calster BV. Risk prediction with machine learning and regression methods. Biom J. 2014;56(4):601-6.
Meeraus WH, Petersen I, Chin RF, Knott F, Gilbert R. Childhood epilepsy recorded in primary care in the UK. Arch Dis Child. 2013;98(3):195-202.
Fonferko-Shadrach B, Lacey AS, White CP, Powell HWR, Sawhney IMS, Lyons RA, et al. Validating epilepsy diagnoses in routinely collected data. Seizure. 2017;52:195-8.
Mbizvo GK, Bennett KH, Schnier C, Simpson CR, Duncan SE, Chin RFM. The accuracy of using administrative healthcare data to identify epilepsy cases: a systematic review of validation studies. Epilepsia. 2020;61(7):1319-35. Available from http://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16547.
Tu K, Wang M, Jaakkimainen RL, Butt D, Ivers NM, Young J, et al. Assessing the validity of using administrative data to identify patients with epilepsy. Epilepsia. 2014;55(2):335-43.
Lee D, de Keizer N, Lau F, Cornet R. Literature review of SNOMED CT use. J Am Med Inform Assoc JAMIA. 2014;21(e1):e11-9.
Josephson CB, Lowerison M, Vallerand I, Sajobi TT, Patten S, Jette N, et al. Association of depression and treated depression with epilepsy and seizure outcomes: a multicohort analysis. JAMA Neurol. 2017;74(5):533-9.
Gorton HC, Webb RT, Carr MJ, DelPozo-Banos M, John A, Ashcroft DM. Risk of unnatural mortality in people with epilepsy. JAMA Neurol. 2018;75(8):929-38.
Lowerison MW, Josephson CB, Jetté N, Sajobi TT, Patten S, Williamson T, et al. Association of levels of specialized care with risk of premature mortality in patients with epilepsy. JAMA Neurol. 2019;76(11):1352-8.
Hesdorffer DC, Ishihara L, Mynepalli L, Webb DJ, Weil J, Hauser WA. Epilepsy, suicidality, and psychiatric disorders: a bidirectional association. Ann Neurol. 2012;72(2):184-91.
Delen D, Davazdahemami B, Eryarsoy E, Tomak L, Valluru A. Using predictive analytics to identify drug-resistant epilepsy patients. Health Informatics J. 2020;26(1):449-60.
Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav. 2018;88:251-61.
Xiao F, Koepp MJ, Pharmaco-fMRI ZD. Pharmaco-fMRI: a tool to predict the response to antiepileptic drugs in epilepsy. Front Neurol. 2019;10. Available from https://www.frontiersin.org/articles/10.3389/fneur.2019.01203/full.
Sidhu MK, Duncan JS, Sander JW. Neuroimaging in epilepsy. Curr Opin Neurol. 2018;31(4):371-8.
Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36(05):302-8.
Bao Y, Liu X, Xiao Z. Association between two SCN1A polymorphisms and resistance to sodium channel blocking AEDs: a meta-analysis. Neurol Sci. 2018;39(6):1065-72.
A roadmap for precision medicine in the epilepsies. Lancet Neurol. 2015;14(12):1219-28.
Josephson CB, Engbers JDT, Wang M, Perera K, Roach P, Sajobi TT, et al. Psychosocial profiles and their predictors in epilepsy using patient-reported outcomes and machine learning. Epilepsia. 2020;61(6):1201-10. Available from http://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16526.
Szoeke CE, Newton M, Wood JM, Goldstein D, Berkovic SF, OBrien TJ, Sheffield LJ. Update on pharmacogenetics in epilepsy: a brief review. Lancet Neurol. 2006;5(2):189-96.
Perucca P, Carter J, Vahle V, Gilliam FG. Adverse antiepileptic drug effects. Neurology. 2009;72(14):1223-9.
Chung W-H, Hung S-I, Hong H-S, Hsih M-S, Yang L-C, Ho H-C, et al. A marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.
Beniczky S, Jeppesen J. Non-electroencephalography-based seizure detection. Curr Opin Neurol. 2019;32(2):198-204.
Meritam P, Ryvlin P, Beniczky S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: a field study. Epilepsia. 2018;59(S1):48-52.
Beniczky S, Conradsen I, Pressler R, Wolf P. Quantitative analysis of surface electromyography: biomarkers for convulsive seizures. Clin Neurophysiol. 2016;127(8):2900-7.
Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 2019;153:68-70.
Sisterson ND, Wozny TA, Kokkinos V, Bagic A, Urban AP, Richardson RM. A rational approach to understanding and evaluating responsive neurostimulation. Neuroinformatics. 2020;18(3):365-75.
Denny JC, Bastarache L, Roden DM. Phenome-wide association studies as a tool to advance precision medicine. Annu Rev Genomics Hum Genet. 2016;17:353-73.
Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26(9):1205-10.
Doshi-Velez F, Ge Y, Kohane I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics. 2014;133(1):e54-63.
Larson EB. Building trust in the power of “Big Data” research to serve the public good. JAMA. 2013;309(23):2443-4.
Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351-2.
Feero WG. Introducing “Genomics and Precision Health”. JAMA. 2017;317(18):1842-3.
Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216-9.
Heading RC. Proton pump inhibitor failure in gastro-oesophageal reflux disease: a perspective aided by the Gartner hype cycle. Clin Med. 2017;17(2):132-6.
Steyerberg EW, Uno H, Ioannidis JPA, van Calster B, Ukaegbu C, Dhingra T, et al. Poor performance of clinical prediction models: the harm of commonly applied methods. J Clin Epidemiol. 2018;98:133-43.
Adibi A, Sadatsafavi M, Ioannidis JPA. Validation and utility testing of clinical prediction models: time to change the approach. JAMA. 2020;324:235-5. Available from https://jamanetwork.com/journals/jama/fullarticle/2762532.
Damen JAAG, Hooft L, Schuit E, Debray TPA, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ [Internet]. 2016;353:i2416. Available from http://www.bmj.com/content/353/bmj.i2416.
Chu S, Tan G, Wang X, Liu L. Validation of the predictive model for seizure recurrence after withdrawal of antiepileptic drugs. Epilepsy Behav. 2020:106987. https://doi.org/10.1016/j.yebeh.2020.106987.
Lin J, Ding S, Li X, Hua Y, Wang X, He R, et al. External validation and comparison of two prediction models for seizure recurrence after the withdrawal of antiepileptic drugs in adult patients. Epilepsia. 2020;61(1):115-24.
Busch RM, Hogue O, Kattan MW, Hamberger M, Drane DL, Hermann B, et al. Nomograms to predict naming decline after temporal lobe surgery in adults with epilepsy. Neurology. 2018;91(23):e2144-52.
Ioannidis JPA. Why most published research findings are false. PLoS Medicine. 2005;2(8):e124.
Waljee A, Higgins P. Machine learning in medicine: a primer for physicians. Am J Gastroenterol. 2010;105(6):1224-6.
General Practice. UK Biobank [Internet]. [cited 2020]. Available from https://www.ukbiobank.ac.uk/general-practice/.
Salman RA-S, Hall JM, Horne MA, Moultrie F, Josephson CB, Bhattacharya JJ, et al. Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol. 2012;11(3):150-6.
Benbadis SR, LaFrance WC, Papandonatos GD, Korabathina K, Lin K, Kraemer HC. Interrater reliability of EEG-video monitoring. Neurology. 2009;73(11):843-6.
Jing J, Herlopian A, Karakis I, Ng M, Halford JJ, Lam A, et al. Interrater reliability of experts in identifying interictal epileptiform discharges in electroencephalograms. JAMA Neurol. 2020;77(1):49-57.
Scheuer ML, Wilson SB, Antony A, Ghearing G, Urban A, Bagic AI. Seizure detection: interreader agreement and detection algorithm assessments using a large dataset. J Clin Neurophysiol [Internet]. 2020 [cited 2020]; Publish Ahead of Print. Available from http://journals.lww.com/clinicalneurophys/Abstract/9000/Seizure_Detection__Interreader_Agreement_and.99407.aspx.
Singh S, Sandy S, Wiebe S. Ictal onset on intracranial EEG: do we know it when we see it? State of the evidence. Epilepsia. 2015;56(10):1629-38.
Bloom J, Brink H.Overcoming the barriers to production-ready machine learning workflows [Internet]. [cited 2020]. Available from https://cdn.oreillystatic.com/en/assets/1/event/105/Overcoming%20the%20Barriers%20to%20Production-Ready%20Machine-Learning%20Workflows%20Presentation%201.pdf.
Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept “Black Box” medicine? Ann Intern Med. 2019;172(1):59-60.
Mason C, Manzotti E. Induced pluripotent stem cells: an emerging technology platform and the Gartner hype cycle. Regen Med. 2009;4(3):329-31.
Contributed Indexing:
Keywords: big data; epilepsy; machine learning; personalized medicine; precision medicine
Entry Date(s):
Date Created: 20201118 Date Completed: 20210921 Latest Revision: 20210921
Update Code:
20240105
DOI:
10.1111/epi.16739
PMID:
33205406
Czasopismo naukowe
Precision medicine can be distilled into a concept of accounting for an individual's unique collection of clinical, physiologic, genetic, and sociodemographic characteristics to provide patient-level predictions of disease course and response to therapy. Abundant evidence now allows us to determine how an average person with epilepsy will respond to specific medical and surgical treatments. This is useful, but not readily applicable to an individual patient. This has brought into sharp focus the desire for a more individualized approach through which we counsel people based on individual characteristics, as opposed to population-level data. We are now accruing data at unprecedented rates, allowing us to convert this ideal into reality. In addition, we have access to growing volumes of administrative and electronic health records data, biometric, imaging, genetics data, microbiome, and other "omics" data, thus paving the way toward phenome-wide association studies and "the epidemiology of one." Despite this, there are many challenges ahead. The collating, integrating, and storing sensitive multimodal data for advanced analytics remains difficult as patient consent and data security issues increase in complexity. Agreement on many aspects of epilepsy remains imperfect, rendering models sensitive to misclassification due to a lack of "ground truth." Even with existing data, advanced analytics models are prone to overfitting and often failure to generalize externally. Finally, uptake by clinicians is often hindered by opaque, "black box" algorithms. Systematic approaches to data collection and model generation, and an emphasis on education to promote uptake and knowledge translation, are required to propel epilepsy-based precision medicine from the realm of the theoretical into routine clinical practice.
(© 2020 International League Against Epilepsy.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies