Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

How directed evolution reshapes the energy landscape in an enzyme to boost catalysis.

Tytuł:
How directed evolution reshapes the energy landscape in an enzyme to boost catalysis.
Autorzy:
Otten R; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
Pádua RAP; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
Bunzel HA; Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
Nguyen V; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
Pitsawong W; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
Patterson M; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
Sui S; Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
Perry SL; Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
Cohen AE; Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA.
Hilvert D; Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland. .
Kern D; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA. .
Źródło:
Science (New York, N.Y.) [Science] 2020 Dec 18; Vol. 370 (6523), pp. 1442-1446. Date of Electronic Publication: 2020 Nov 19.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: : Washington, DC : American Association for the Advancement of Science
Original Publication: New York, N.Y. : [s.n.] 1880-
MeSH Terms:
Biocatalysis*
Computer-Aided Design*
Directed Molecular Evolution*
Enzymes/*chemistry
Enzymes/*genetics
Proteins/*chemistry
Proteins/*genetics
Catalytic Domain ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation
References:
FEBS Lett. 2001 Dec 7;509(2):303-8. (PMID: 11741607)
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3790-5. (PMID: 22357762)
J Biomol NMR. 2009 Aug;44(4):213-23. (PMID: 19548092)
Anal Biochem. 2009 Apr 1;387(1):30-41. (PMID: 19168024)
J Biomol NMR. 2017 Oct;69(2):93-99. (PMID: 29043470)
J Biomol NMR. 2013 Apr;55(4):355-67. (PMID: 23456039)
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10358-63. (PMID: 22685214)
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. (PMID: 19461840)
Annu Rev Biochem. 2006;75:519-41. (PMID: 16756501)
Nature. 2008 May 8;453(7192):190-5. (PMID: 18354394)
J Biol Chem. 2012 Oct 12;287(42):34979-34991. (PMID: 22859300)
Bioinformatics. 2015 Apr 15;31(8):1325-7. (PMID: 25505092)
Chem Rev. 2006 Aug;106(8):3055-79. (PMID: 16895318)
Nucleic Acids Res. 2008 Jan;36(Database issue):D402-8. (PMID: 17984079)
Nat Protoc. 2006;1(2):749-54. (PMID: 17406304)
J Mol Biol. 2011 Apr 1;407(3):391-412. (PMID: 21277311)
Bioinformatics. 2012 Aug 1;28(15):1972-9. (PMID: 22543369)
Methods Enzymol. 2009;467:601-626. (PMID: 19897109)
Eur J Biochem. 1984 Dec 17;145(3):485-8. (PMID: 6096140)
Acc Chem Res. 2015 Feb 17;48(2):466-73. (PMID: 25539442)
Angew Chem Int Ed Engl. 2013 May 27;52(22):5700-25. (PMID: 23526810)
Nat Chem. 2017 Jan;9(1):50-56. (PMID: 27995916)
J Biomol NMR. 1994 Nov;4(6):845-58. (PMID: 7812156)
J Biomol NMR. 2001 Jun;20(2):177-80. (PMID: 11495249)
J Mol Biol. 2010 Mar 5;396(4):1025-42. (PMID: 20036254)
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):454-67. (PMID: 22505266)
Acta Crystallogr D Biol Crystallogr. 2014 Dec 1;70(Pt 12):3290-8. (PMID: 25478846)
Angew Chem Int Ed Engl. 2019 Jul 15;58(29):9758-9769. (PMID: 31106508)
Nature. 1996 Sep 5;383(6595):60-2. (PMID: 8779715)
Nature. 2013 Nov 21;503(7476):418-21. (PMID: 24132235)
Elife. 2012 Dec 18;1:e00311. (PMID: 23251785)
Nat Methods. 2020 Mar;17(3):261-272. (PMID: 32015543)
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8013-8. (PMID: 24847076)
Curr Opin Struct Biol. 2018 Jun;50:49-57. (PMID: 29120734)
J Biomol NMR. 1995 Nov;6(3):277-93. (PMID: 8520220)
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. (PMID: 20383002)
Nat Commun. 2018 Sep 25;9(1):3900. (PMID: 30254369)
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6823-7. (PMID: 21482808)
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):223-233. (PMID: 28291757)
Nature. 1995 Jan 19;373(6511):228-30. (PMID: 7816136)
Nature. 1991 Mar 14;350(6314):121-4. (PMID: 2005961)
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. (PMID: 22505256)
Curr Opin Chem Biol. 2010 Oct;14(5):644-51. (PMID: 20729130)
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877. (PMID: 31588918)
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):271-81. (PMID: 21460445)
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. (PMID: 20124692)
Biopolymers. 1983 Dec;22(12):2577-637. (PMID: 6667333)
Nat Chem Biol. 2009 Aug;5(8):543-50. (PMID: 19620995)
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14. (PMID: 23793146)
J Mol Biol. 1999 Sep 10;292(1):111-23. (PMID: 10493861)
Nucleic Acids Res. 2015 Jan;43(Database issue):D364-8. (PMID: 25352545)
Chem Commun (Camb). 2018 Jun 19;54(50):6622-6634. (PMID: 29780987)
Chem Rev. 2006 Aug;106(8):3210-35. (PMID: 16895325)
Curr Opin Chem Biol. 2013 Apr;17(2):221-8. (PMID: 23498973)
Chem Rev. 1997 Aug 5;97(5):1281-1302. (PMID: 11851452)
J Mol Biol. 2017 Feb 3;429(3):365-371. (PMID: 27964945)
J Am Chem Soc. 2005 Nov 2;127(43):14970-1. (PMID: 16248604)
J Biol Chem. 1972 Dec 25;247(24):8195-7. (PMID: 4640942)
Anal Biochem. 2009 Apr 1;387(1):20-9. (PMID: 19154726)
Grant Information:
P30 GM124169 United States GM NIGMS NIH HHS; S10 OD021832 United States OD NIH HHS; T32 GM135126 United States GM NIGMS NIH HHS; P41 GM103393 United States GM NIGMS NIH HHS; United States HHMI Howard Hughes Medical Institute
Substance Nomenclature:
0 (Enzymes)
0 (Proteins)
Entry Date(s):
Date Created: 20201120 Date Completed: 20210208 Latest Revision: 20231115
Update Code:
20240105
PubMed Central ID:
PMC9616100
DOI:
10.1126/science.abd3623
PMID:
33214289
Czasopismo naukowe
The advent of biocatalysts designed computationally and optimized by laboratory evolution provides an opportunity to explore molecular strategies for augmenting catalytic function. Applying a suite of nuclear magnetic resonance, crystallography, and stopped-flow techniques to an enzyme designed for an elementary proton transfer reaction, we show how directed evolution gradually altered the conformational ensemble of the protein scaffold to populate a narrow, highly active conformational ensemble and accelerate this transformation by nearly nine orders of magnitude. Mutations acquired during optimization enabled global conformational changes, including high-energy backbone rearrangements, that cooperatively organized the catalytic base and oxyanion stabilizer, thus perfecting transition-state stabilization. The development of protein catalysts for many chemical transformations could be facilitated by explicitly sampling conformational substates during design and specifically stabilizing productive substates over all unproductive conformations.
(Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies