Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Leaf dorsoventrality candidate gene CpARF4 has conserved expression pattern but divergent tasiR-ARF regulation in the water fern Ceratopteris pteridoides.

Tytuł:
Leaf dorsoventrality candidate gene CpARF4 has conserved expression pattern but divergent tasiR-ARF regulation in the water fern Ceratopteris pteridoides.
Autorzy:
Sun J; Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou, 416000, China.
Li GS; Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou, 416000, China.
Źródło:
American journal of botany [Am J Bot] 2020 Nov; Vol. 107 (11), pp. 1470-1480. Date of Electronic Publication: 2020 Nov 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2018-> : [Philadelphia, PA] : Wiley
Original Publication: Baltimore Md : Botanical Society Of America
MeSH Terms:
Ferns*/genetics
Indoleacetic Acids ; Phylogeny ; Plant Leaves ; Water
References:
Aya, K., M. Kobayashi, J. Tanaka, H. Ohyanagi, T. Suzuki, K. Yano, T. Takano, and M. Matsuoka. 2015. De novo transcriptome assembly of a fern, Lygodium japonicum, and a web resource database, Ljtrans DB. Plant Cell & Physiology 56: e5.
Banks, J. A., T. Nishiyama, M. Hasebe, J. L. Bowman, M. Gribskov, C. dePamphilis, V. A. Albert, et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332: 960-963.
Bailey, T. L., and C. Elkan. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology (ISMB’94), 28-36, AAAI Press, Menlo Park, CA, USA.
Bharathan, G., T. E. Goliber, C. Moore, S. Kessler, T. Pham, and N. R. Sinha. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science 296: 1858-1860.
Bower, F. O. 1935. Primitive land plants-also known as the Archegoniatae, MacMillan, London, UK.
Bowman, J. L., Y. Eshed, and S. F. Baum. 2002. Establishment of polarity in angiosperm lateral organs. Trends in Genetics 18: 134-141.
Bushart, T. J., A. E. Cannon, A. Ul Haque, P. San Miguel, K. Mostajeran, G. B. Clark, D. M. Porterfield, and S. J. Roux. 2012. RNA-seq analysis identifies potential modulators of gravity response in spores of Ceratopteris (Parkeriaceae): evidence for modulation by calcium pumps and apyrase activity. American Journal of Botany 100: 161-174.
Byrne, M. E., R. Barley, M. Curtis, J. M. Arroyo, M. Dunham, A. Hudson, and R. A. Martienssen. 2000. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408: 967-971.
Chitwood, D. H., F. T. Nogueira, M. D. Howell, T. A. Montgomery, J. C. Carrington, and M. C. Timmermans. 2009. Pattern formation via small RNA mobility. Genes & Development 23: 549-554.
Christenhusz, M. J., and M. W. Chase. 2014. Trends and concepts in fern classification. Annals of Botany 113: 571-594.
De Smet, I., U. Voss, S. Lau, M. Wilson, N. Shao, R. E. Timme, R. Swarup, et al. 2011. Unraveling the evolution of auxin signaling. Plant Physiology 155: 209-221.
Der, J. P., M. S. Barker, N. J. Wickett, C. W. dePamphilis, and P. G. Wolf. 2011. De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics 12: 99.
Dolan, L., and R. Poethig. 1998. Clonal analysis of leaf development in cotton. American Journal of Botany 85: 315-321.
Emery, J. F., S. K. Floyd, J. Alvarez, Y. Eshed, N. P. Hawker, A. Izhaki, S. F. Baum, and J. L. Bowman. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology 13: 1768-1774.
Eshed, Y., S. F. Baum, J. V. Perea, and J. L. Bowman. 2001. Establishment of polarity in lateral organs of plants. Current Biology 11: 1251-1260.
Finet, C., A. Berne-Dedieu, C. P. Scutt, and F. Marletaz. 2012. Evolution of the ARF gene family in land plants: old domains, new tricks. Molecular Biology and Evolution 30: 45-56.
Floyd, S. K., and J. L. Bowman. 2006. Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Current Biology 16: 1911-1917.
Frank, M. H., M. B. Edwards, E. R. Schultz, M. R. McKain, Z. Fei, I. Sorensen, J. K. Rose, and M. J. Scanlon. 2015. Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages. New Phytologist 207: 893-904.
Fuller, C. W., S. Kumar, M. Porel, M. Chien, A. Bibillo, P. B. Stranges, M. Dorwart, et al. 2016. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proceedings of the National Academy of Sciences, USA 113: 5233-5238.
Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321.
Haas, B. J., A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B. Couger, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protocol 8: 1494-1512.
Harrison, C. J., S. B. Corley, E. C. Moylan, D. L. Alexander, R. W. Scotland, and J. A. Langdale. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434: 509-514.
Husbands, A. Y., A. H. Benkovics, F. T. Nogueira, M. Lodha, and M. C. Timmermans. 2015. The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. Plant Cell 27: 3321-3335.
Iwakawa, H., M. Iwasaki, S. Kojima, Y. Ueno, T. Soma, H. Tanaka, E. Semiarti, et al. 2007. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant Journal 51: 173-184.
Iwasaki, M., H. Takahashi, H. Iwakawa, A. Nakagawa, T. Ishikawa, H. Tanaka, Y. Matsumura, et al. 2013. Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development 140: 1958-1969.
Jordon-Thaden, I. E., A. S. Chanderbali, M. A. Gitzendanner, and D. E. Soltis. 2015. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta. Applications in Plant Sciences 3: https://doi.org/10.3732/apps.1400105.
Juarez, M. T., J. S. Kui, J. Thomas, B. A. Heller, and M. C. Timmermans. 2004. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428: 84-88.
Kelley, D. R., A. Arreola, T. L. Gallagher, and C. S. Gasser. 2012. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 139: 1105-1109.
Kerstetter, R. A., K. Bollman, R. A. Taylor, K. Bomblies, and R. S. Poethig. 2001. KANADI regulates organ polarity in Arabidopsis. Nature 411: 706-709.
Lefort, V., J. E. Longueville, and O. Gascuel. 2017. SMS: Smart Model Selection in PhyML. Molecular Biology and Evolution 34: 2422-2424.
Li, F. W., P. Brouwer, L. Carretero-Paulet, S. Cheng, J. de Vries, P. M. Delaux, A. Eily, et al. 2018. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants 4: 460-472.
Li, S. B., Z. Z. Xie, C. G. Hu, and J. Z. Zhang. 2016. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science 7: 47.
Lian, H., X. Li, Z. Liu, and Y. He. 2013. HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis. Journal of Experimental Botany 64: 3397-3410.
Lin, W. C., B. Shuai, and P. S. Springer. 2003. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15: 2241-2252.
Marchant, D. B., E. B. Sessa, P. G. Wolf, K. Heo, W. B. Barbazuk, P. S. Soltis, and D. E. Soltis. 2019. The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. Scientific Reports 9: 18181.
McConnell, J. R., J. Emery, Y. Eshed, N. Bao, J. Bowman, and M. K. Barton. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709-713.
Merelo, P., H. Ram, M. Pia Caggiano, C. Ohno, F. Ott, D. Straub, M. Graeff, et al. 2016. Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Proceedings of the National Academy of Sciences, USA 113: 11973-11978.
Nogueira, F. T., S. Madi, D. H. Chitwood, M. T. Juarez, and M. C. Timmermans. 2007. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes & Development 21: 750-755.
Ori, N., Y. Eshed, G. Chuck, J. L. Bowman, and S. Hake. 2000. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127: 5523-5532.
Panchy, N., M. Lehti-Shiu, and S. H. Shiu. 2016. Evolution of gene duplication in plants. Plant Physiology 171: 2294-2316.
Pekker, I., J. P. Alvarez, and Y. Eshed. 2005. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17: 2899-2910.
Poethig, R. S., and I. M. Sussex. 1985. The cellular parameters of leaf development in tobacco: a clonal analysis. Planta 165: 170-184.
Prigge, M. J., D. Otsuga, J. M. Alonso, J. R. Ecker, G. N. Drews, and S. E. Clark. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17: 61-76.
Pryer, K. M., E. Schuettpelz, P. G. Wolf, H. Schneider, A. R. Smith, and R. Cranfill. 2004. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany 91: 1582-1598.
Qi, J., Y. Wang, T. Yu, A. Cunha, B. Wu, T. Vernoux, E. Meyerowitz, and Y. Jiao. 2014. Auxin depletion from leaf primordia contributes to organ patterning. Proceedings of the National Academy of Sciences, USA 111: 18769-18774.
Rhoades, M. W., B. J. Reinhart, L. P. Lim, C. B. Burge, B. Bartel, and D. P. Bartel. 2002. Prediction of plant microRNA targets. Cell 110: 513-520.
Salmi, M. L., and S. J. Roux. 2008. Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229: 151-159.
Salmi, M. L., T. J. Bushart, S. C. Stout, and S. J. Roux. 2005. Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. Plant Physiology 138: 1734-1745.
Schwab, R., J. F. Palatnik, M. Riester, C. Schommer, M. Schmid, and D. Weigel. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8: 517-527.
Semiarti, E., Y. Ueno, H. Tsukaya, H. Iwakawa, C. Machida, and Y. Machida. 2001. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128: 1771-1783.
Shen, H., D. Jin, J. P. Shu, X. L. Zhou, M. Lei, R. Wei, H. Shang, et al. 2018. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns. Gigascience 7: 1-11.
Tang, G., B. J. Reinhart, D. P. Bartel, and P. D. Zamore. 2003. A biochemical framework for RNA silencing in plants. Genes & Development 17: 49-63.
Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.
Tomescu, A. M. 2009. Megaphylls, microphylls and the evolution of leaf development. Trends in Plant Science 14: 5-12.
Toriba, T., T. Suzaki, T. Yamaguchi, Y. Ohmori, H. Tsukaya, and H. Y. Hirano. 2010. Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. Plant Cell 22: 1452-1462.
Vasco, A., R. C. Moran, and B. A. Ambrose. 2013. The evolution, morphology, and development of fern leaves. Frontiers in Plant Science 4: 345.
Vasco, A., T. L. Smalls, S. W. Graham, E. D. Cooper, G. K. Wong, D. W. Stevenson, R. C. Moran, and B. A. Ambrose. 2016. Challenging the paradigms of leaf evolution: Class III HD-Zips in ferns and lycophytes. New Phytologist 212: 745-758.
Vial-Pradel, S., S. Keta, M. Nomoto, H. Takahashi, M. Suzuki, Y. Yokoyama, M. Sasabe, et al. 2018. Arabidopsis zinc-finger-like protein ASYMMETRIC LEAVES2 (AS2) and two nucleolar proteins maintain gene body DNA methylation in the leaf polarity gene ETTIN (ARF3). Plant Cell & Physiology 59: 1385-1397.
Waites, R., and A. Hudson. 1995. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121: 2143-2154.
Waites, R., H. R. Selvadurai, I. R. Oliver, and A. Hudson. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779-789.
Williams, L., C. C. Carles, K. S. Osmont, and J. C. Fletcher. 2005. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proceedings of the National Academy of Sciences, USA 102: 9703-9708.
Worsdell, W. 1905. The principles of morphology II. The evolution of the sporangium. New Phytologist 4: 163-170.
Wu, G., W. C. Lin, T. Huang, R. S. Poethig, P. S. Springer, and R. A. Kerstetter. 2008. KANADI1 regulates adaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2. Proceedings of the National Academy of Sciences, USA 105: 16392-16397.
Xia, R., J. Xu, and B. C. Meyers. 2017. The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29: 1232-1247.
Yamaguchi, T., S. Yano, and H. Tsukaya. 2010. Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell 22: 2141-2155.
Yamauchi, D., K. Sutoh, H. Kanegae, T. Horiguchi, K. Matsuoka, H. Fukuda, and M. Wada. 2005. Analysis of expressed sequence tags in prothallia of Adiantum capillus-veneris. Journal of Plant Research 118: 223-227.
Yifhar, T., I. Pekker, D. Peled, G. Friedlander, A. Pistunov, M. Sabban, G. Wachsman, et al. 2012. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24: 3575-3589.
Zhang, J. 2003. Evolution by gene duplication: an update. TRENDS in Ecology and Evolution 18: 292-298.
Zimmermann, W. 1952. Main results of the “telome theory”. The Palaeobotanist 1: 456-470.
Zumajo-Cardona, C., A. Vasco, and B. A. Ambrose. 2019. The evolution of the KANADI gene family and leaf development in lycophytes and ferns. Plants 8: 313.
Contributed Indexing:
Keywords: Aspleniaceae; Parkeriaceae; Polypodiaceae; auxin response factor; ferns; gene duplication; leaf evolution; tasiR-ARF
Substance Nomenclature:
0 (Indoleacetic Acids)
059QF0KO0R (Water)
Entry Date(s):
Date Created: 20201120 Date Completed: 20201223 Latest Revision: 20201223
Update Code:
20240105
DOI:
10.1002/ajb2.1570
PMID:
33216953
Czasopismo naukowe
Premise: Leaves are traditionally classified into microphylls and megaphylls, and recently have been regarded as independently originating in lycophytes, ferns, and seed plants. The developmental genetics of leaf dorsoventrality, a synapomorphy in vascular plants, has been extensively studied in flowering plants. AUXIN RESPONSE FACTOR4 (ARF4) genes are key to leaf abaxial identity in flowering plants, but whether they exist in ferns is still an open question.
Methods: ARF4 genes from Ceratopteris pteridoides, Cyrtomium guizhouense, and Parathelypteris nipponica were mined from transcriptomes and investigated in terms of evolutionary phylogeny and sequence motifs, with a focus on the tasiR-ARF binding site. In situ hybridization was used to localize expression of CpARF4 in Ceratopteris pteridoides. 5'RNA ligase-mediated-RACE was employed to verify whether CpARF4 transcripts were sliced by tasiR-ARF.
Results: ARF4 genes exist in ferns, and this lineage originates from a gene duplication in the common ancestor of ferns and seed plants. ARF4 genes are of a single copy in the ferns studied here, and they contain divergent and, at most, one tasiR-ARF binding site. CpARF4 is expressed in the abaxial but not the adaxial domain of leaf primordia at various developmental stages. Transcript slicing guided by tasiR-ARF is active in C. pteridoides, but CpARF4 probably has not been affected by it.
Conclusions: Fern ARF4 genes differ in copy number and tasiR-ARF regulation relative to flowering plants, though they can be similarly expressed in the abaxial domain of leaves, revealing a key role for ARF4 genes in the evolution of leaf dorsoventrality of vascular plants.
(© 2020 Botanical Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies