Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.

Tytuł :
Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
Autorzy :
Han Y; Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province, China. Electronic address: .
Wang T; Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, No.246, Xufu Road, Nangang District, Harbin, Heilongjiang Province, China. Electronic address: .
Wu P; Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province, China. Electronic address: .
Zhang H; Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province, China. Electronic address: .
Chen H; Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province, China. Electronic address: .
Yang C; Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province, China. Electronic address: .
Pokaż więcej
Źródło :
Magnetic resonance imaging [Magn Reson Imaging] 2021 Apr; Vol. 77, pp. 36-43. Date of Electronic Publication: 2020 Nov 18.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Publication: <2008->: Amsterdam : Elsevier
Original Publication: New York : Pergamon, c1982-
MeSH Terms :
Image Processing, Computer-Assisted*
Magnetic Resonance Imaging*
Preoperative Period*
Meningeal Neoplasms/*diagnostic imaging
Meningeal Neoplasms/*pathology
Meningioma/*diagnostic imaging
Meningioma/*pathology
Area Under Curve ; Cluster Analysis ; Female ; Humans ; Logistic Models ; Male ; Meningeal Neoplasms/surgery ; Meningioma/surgery ; Middle Aged ; Neoplasm Grading ; ROC Curve ; Retrospective Studies ; Support Vector Machine
Contributed Indexing :
Keywords: Grading*; MRI*; Meningiomas*; Radiomics*
Entry Date(s) :
Date Created: 20201121 Date Completed: 20210416 Latest Revision: 20210416
Update Code :
20210417
DOI :
10.1016/j.mri.2020.11.009
PMID :
33220449
Czasopismo naukowe
Purpose: We aimed to develop a radiomics model to predict the histopathological grading of meningiomas by magnetic resonance imaging (MRI) before surgery.
Methods: We recruited 131 patients with pathological diagnosis of meningiomas. All the patients had undergone MRI before surgery on a 3.0 T MRI scanner to obtain T1 fluid- attenuated inversion recovery (T1 FLAIR) images, T2-weighted images (T2WI) and T1 FLAIR with contrast enhancement (CE-T1 FLAIR) images covering the whole brain. The removing features with low variance, univariate feature selection, and least absolute shrinkage and selection operator (LASSO) were used to select radiomics features. Six classifiers were used to train the models (logistic regression (LR), k-nearest neighbor (KNN), decision tree (DT), support vector machine (SVM), random forests (RF), and XGBoost), and then 24 models were established using a random verification method to differentiate low-grade from high-grade meningiomas. The performance was assessed by receiver-operating characteristic (ROC) analysis, the f1-score, sensitivity, and specificity.
Results: The radiomics features were significantly associated with the histopathological grading. Quantitative imaging features (n = 1409) were extracted, and nine features were selected to predict the grades of meningiomas. The best performance of the radiomics model for the degree of differentiation was obtained by SVM (area under the curve (AUC), 0.956; 95% confidence interval (CI), 0.83-1.00; sensitivity, 0.87; specificity, 0.92; f1-score, 0.90).
Conclusion: The radiomics models are of great value in predicting the histopathological grades of meningiomas, and have broad prospects in radiology and clinics.
(Copyright © 2020 Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies