Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A data-driven respiratory motion estimation approach for PET based on time-of-flight weighted positron emission particle tracking.

Tytuł:
A data-driven respiratory motion estimation approach for PET based on time-of-flight weighted positron emission particle tracking.
Autorzy:
Tumpa TR; Graduate School of Medicine, The University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.; Electrical Engineering and Computer Science, The University of Tennessee, 1520 Middle Dr, Knoxville, TN, 37996, USA.
Acuff SN; Graduate School of Medicine, The University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.
Gregor J; Electrical Engineering and Computer Science, The University of Tennessee, 1520 Middle Dr, Knoxville, TN, 37996, USA.
Lee S; Independent Consultant, Novato, CA, USA.
Hu D; Independent Consultant, Knoxville, TN, USA.
Osborne DR; Graduate School of Medicine, The University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.
Źródło:
Medical physics [Med Phys] 2021 Mar; Vol. 48 (3), pp. 1131-1143. Date of Electronic Publication: 2020 Dec 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2017- : Hoboken, NJ : John Wiley and Sons, Inc.
Original Publication: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics.
MeSH Terms:
Electrons*
Motion*
Positron Emission Tomography Computed Tomography*
Algorithms ; Humans ; Image Processing, Computer-Assisted ; Phantoms, Imaging ; Positron-Emission Tomography ; Respiration
References:
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5249-5252. (PMID: 30441522)
Phys Med Biol. 2017 Jun 21;62(12):4741-4755. (PMID: 28520558)
Med Phys. 2020 Aug;47(8):3402-3414. (PMID: 32339300)
J Nucl Med. 2007 May;48(5):758-63. (PMID: 17475964)
Eur J Nucl Med Mol Imaging. 2013 Apr;40(4):602-14. (PMID: 23238525)
Med Phys. 2015 Oct;42(10):5903-12. (PMID: 26429264)
Phys Med Biol. 2011 Jul 7;56(13):3953-65. (PMID: 21666288)
Med Phys. 2020 Apr;47(4):1713-1726. (PMID: 31990986)
Phys Med Biol. 2009 Apr 7;54(7):1935-50. (PMID: 19265207)
IEEE Trans Med Imaging. 2018 May;37(5):1140-1148. (PMID: 29727277)
IEEE Trans Med Imaging. 2006 Apr;25(4):476-85. (PMID: 16608062)
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4520-3. (PMID: 26737299)
Radiology. 2016 Oct;281(1):229-38. (PMID: 27092660)
Med Phys. 2010 Oct;37(10):5550-9. (PMID: 21089790)
Phys Med Biol. 2018 May 29;63(11):115009. (PMID: 29714707)
Phys Med Biol. 2011 Apr 21;56(8):2375-89. (PMID: 21427485)
Br J Radiol. 2018 May;91(1085):20170793. (PMID: 29419327)
Phys Med Biol. 2019 Aug 21;64(16):165014. (PMID: 30822762)
Phys Med Biol. 2017 Apr 21;62(8):3204-3220. (PMID: 28346222)
IEEE Trans Med Imaging. 2008 Aug;27(8):1164-75. (PMID: 18672433)
Phys Med Biol. 2019 Mar 08;64(6):065002. (PMID: 30695768)
EJNMMI Phys. 2016 Dec;3(1):5. (PMID: 26911722)
Phys Med Biol. 2006 Aug 7;51(15):3769-83. (PMID: 16861780)
EJNMMI Phys. 2016 Dec;3(1):3. (PMID: 26879863)
IEEE Trans Med Imaging. 2015 Oct;34(10):2131-45. (PMID: 25897950)
J Nucl Med. 2009 May;50(5):674-81. (PMID: 19372491)
Med Phys. 2011 May;38(5):2715-23. (PMID: 21776808)
Grant Information:
Departmental fund
Contributed Indexing:
Keywords: PET; breathing; motion correction; positron emission particle tracking (PEPT); positron emission tomography/computed tomography (PET/CT); respiratory gating; respiratory motion; time-of-flight (TOF)
Entry Date(s):
Date Created: 20201123 Date Completed: 20210430 Latest Revision: 20210430
Update Code:
20240105
PubMed Central ID:
PMC7984169
DOI:
10.1002/mp.14613
PMID:
33226647
Czasopismo naukowe
Purpose: Respiratory motion of patients during positron emission tomography (PET)/computed tomography (CT) imaging affects both image quality and quantitative accuracy. Hardware-based motion estimation, which is the current clinical standard, requires initial setup, maintenance, and calibration of the equipment, and can be associated with patient discomfort. Data-driven techniques are an active area of research with limited exploration into lesion-specific motion estimation. This paper introduces a time-of-flight (TOF)-weighted positron emission particle tracking (PEPT) algorithm that facilitates lesion-specific respiratory motion estimation from raw listmode PET data.
Methods: The TOF-PEPT algorithm was implemented and investigated under different scenarios: (a) a phantom study with a point source and an Anzai band for respiratory motion tracking; (b) a phantom study with a point source only, no Anzai band; (c) two clinical studies with point sources and the Anzai band; (d) two clinical studies with point sources only, no Anzai band; and (e) two clinical studies using lesions/internal regions instead of point sources and no Anzai band. For studies with radioactive point sources, they were placed on patients during PET/CT imaging. The motion tracking was performed using a preselected region of interest (ROI), manually drawn around point sources or lesions on reconstructed images. The extracted motion signals were compared with the Anzai band when applicable. For the purposes of additional comparison, a center-of-mass (COM) algorithm was implemented both with and without the use of TOF information. Using the motion estimate from each method, amplitude-based gating was applied, and gated images were reconstructed.
Results: The TOF-PEPT algorithm is shown to successfully determine the respiratory motion for both phantom and clinical studies. The derived motion signals correlated well with the Anzai band; correlation coefficients of 0.99 and 0.94-0.97 were obtained for the phantom study and the clinical studies, respectively. TOF-PEPT was found to be 13-38% better correlated with the Anzai results than the COM methods. Maximum Standardized Uptake Values (SUVs) were used to quantitatively compare the reconstructed-gated images. In comparison with the ungated image, a 14-39% increase in the max SUV across several lesion areas and an 8.7% increase in the max SUV on the tracked lesion area were observed in the gated images based on TOF-PEPT. The distinct presence of lesions with reduced blurring effect and generally sharper images were readily apparent in all clinical studies. In addition, max SUVs were found to be 4-10% higher in the TOF-PEPT-based gated images than in those based on Anzai and COM methods.
Conclusion: A PEPT- based algorithm has been presented for determining movement due to respiratory motion during PET/CT imaging. Gating based on the motion estimate is shown to quantifiably improve the image quality in both a controlled point source phantom study and in clinical data patient studies. The algorithm has the potential to facilitate true motion correction where the reconstruction algorithm can use all data available.
(© 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies