Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Botanical origin discrimination of Greek honeys: physicochemical parameters versus Raman spectroscopy.

Tytuł:
Botanical origin discrimination of Greek honeys: physicochemical parameters versus Raman spectroscopy.
Autorzy:
Xagoraris M; Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
Lazarou E; Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
Kaparakou EH; Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
Alissandrakis E; Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, Hellenic Mediterranean University, Crete, Greece.
Tarantilis PA; Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
Pappas CS; Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
Źródło:
Journal of the science of food and agriculture [J Sci Food Agric] 2021 Jun; Vol. 101 (8), pp. 3319-3327. Date of Electronic Publication: 2020 Dec 07.
Typ publikacji:
Evaluation Study; Journal Article
Język:
English
Imprint Name(s):
Publication: <2005-> : Chichester, West Sussex : John Wiley & Sons
Original Publication: London, Society of Chemical Industry.
MeSH Terms:
Flowers/*chemistry
Honey/*analysis
Spectrum Analysis, Raman/*methods
Discriminant Analysis ; Flowers/classification ; Greece ; Honey/classification ; Pinus/chemistry ; Thymus Plant/chemistry
References:
Codex Alimentarius Commission, Revised Codex Standard for Honey. Codex Alimentarius Commission, Rome, Italy, pp. 12-1981 (2001) Codex STAN 12-1981.
Annual Agricultural Survey for Livestock Products, Greek Statistical Authority (2020). Agriculture, Livestock. [Online]. Available: https://www.statistics.gr/el/statistics/agr [15 July 2020].
Information and Statistics for Beekeeping, Greek Ministry of Rural Development and Food (2018) [Online]. Available: http://www.minagric.gr/index.php/el/for-farmer-2/animal-production/bees-honey [15 July 2020].
Tananaki C, Thrasyvoulou A, Giraudel JL and Montury M, Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using Kohonen self organising maps. Food Chem 101:1687-1693 (2007).
Karabagias IK, Halatsi EZ, Karabournioti S, Kontakos S and Kontominas MG, Impact of physicochemical parameters, pollen grains, and phenolic compounds on the correct geographical differentiation of fir honeys produced in Greece as assessed by multivariate analyses. Int J Food Prop 20:S520-S533 (2017).
EU, Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off J Eur Communities Legis 10:47-52 (2002) https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:010:0047:0052:EN:PDF.
Government Gazette B-239/23-2-2005; Annex II, article 67 of Greek Food Code. [Online]. Available: http://www.minagric.gr/images/stories/docs/agrotis/MeliMelissokomia/KYA_Taytopoiisi_.pdf.
Karabagias IK, Badeka AV, Kontakos S, Karabournioti S and Kontominas MG, Botanical discrimination of Greek unifloral honeys with physicochemical and chemometric analyses. Food Chem 165:181-190 (2014).
Bentabol-Manzanares A, Hernandez-Garcia Z, Rodriguez-Galdon B, Rodriguez- Rodriguez E and Diaz-Romero C, Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chem 126:664-672 (2011).
Leon-Ruiz V, Vera S, Gonzalez-Porto AV and Andres MPS, Vitamin C and sugar levels as simple markers for discriminating Spanish honey sources. J Food Sci 76:C356-C361 (2011).
Senyuva HZ, Gilbert J, Silici S, Charlton A, Dal C, Gürel N et al., Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. J Agric Food Chem 57:3911-3919 (2009).
Marini F, Magrì AL, Balestrieri F, Fabretti F and Marini D, Supervised pattern recognition applied to the discrimination of the floral origin of six types of Italian honey samples. Anal Chim Acta 515:117-125 (2004).
Terrab A, Dıez MJ and Heredia FJ, Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chem 79:373-379 (2002).
Soria AC, Gonzalez M, De Lorenzo C, Martínez-Castro I and Sanz J, Estimation of the honeydew ratio in honey samples from their physicochemical data and from their volatile composition obtained by SPME and GC-MS. J Sci Food Agric 85:817-824 (2005).
Oroian M, Ropciuc S and Paduret S, Honey adulteration detection using Raman spectroscopy. Food Anal Methods 11:959-968 (2018).
Goodacre R, Radovic BS and Anklam E, Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy. Appl Spectrosc 56:521-527 (2002).
Owen CA, Notingher I, Hill R, Stevens M and Hench LL, Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. J Mater Sci Mater Med 17:1019-1023 (2006).
Corvucci F, Nobili L, Melucci D and Grillenzoni FV, The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem 169:297-304 (2015).
Frausto-Reyes C, Casillas-Penuelas R, Quintanar-Stephano JL, Macias-Lopez E, Bujdud-Perez JM and Medina-Ramirez I, Spectroscopic study of honey from Apis millifera from different regions in Mexico. Spectrochim Acta Part A 178:212-217 (2017).
Oroian M and Ropciuc S, Botanical authentication of honeys based on Raman spectra. J Food Meas Charact 12:545-554 (2018).
Ruoff K, Luginbuhl W, Bogdanov S, Bosset JO, Estermann B, Ziolko T et al., Authentication of the botanical origin of honey by near-infrared spectroscopy. J Agric Food Chem 54:6867-6872 (2006).
Hennessy S, Downey G and O'Donnell CP, Attempted confirmation of the provenance of Corsican PDO honey using FT-IR spectroscopy and multivariate data analysis. J Agric Food Chem 58:9401-9406 (2010).
Latorre CH, Crecente RMP, Martin SG and Garcia JB, A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication. Food Chem 141:3559-3565 (2013).
Chen LZ, Wang JH, Ye ZH, Zhao J, Xue XF, Vander Heyden Y et al., Classification of Chinese honeys according to their floral origin by near infrared spectroscopy. Food Chem 135:338-342 (2012).
Fernández Pierna JA, Abbas O, Dardenne P and Baeten V, Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics. Biotechnol Agron Soc Environ 15:75-84 (2011).
Helrich K, Official Methods of Analysis of Association of Official Analytical Chemists, 15th edn. Association of Official Analytical Chemist, Arlington, VA, USA (1990).
IHC, Harmonised Methods of the International Honey Commission, [Online]. (2009). Available: https://www.ihc-platform.net/ihcmethods2009.pdf.
Louveaux J, Maurizio A and Vorwohl G, Methods of melissopalynology. Bee World 51:125-138 (1970).
Anklam E, A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem 63:549-562 (1998).
Soria A, Gonzalez M, De Lorenzo C, Martınez-Castro I and Sanz J, Characterization of artisanal honeys from Madrid (central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chem 85:121-130 (2004).
Cotte JF, Casabianca H, Chardon S, Lheritier J and Grenier- Loustalot MF, Chromatographic analysis of sugars applied to the characterisation of monofloral honey. Anal Bioanal Chem 380:698-705 (2004).
Mateo R and Bosch-Reig F, Sugar profiles of Spanish unifloral honeys. Food Chem 60:33-41 (1997).
Bogdanov S, Lullmann C, Martin P, von der Ohe W, Russmann H, Vorwohl G et al., Honey quality and international regulatory standards: review by the International Honey Commission. Bee World 80:61-69 (1999).
Thrasyvoulou A and Manikis J, Some physicochemical and microscopic characteristics of Greek unifloral honeys. Apidologie 26:441-452 (1995).
Diez MJ, Andres C and Terrab A, Physicochemical parameters and pollen analysis of Moroccan honeydew honeys. Int J Food Sci Technol 39:167-176 (2004).
Bogdanov S, Ruoff K and Persano Oddo L, Physicochemical methods for the characterisation of unofloral honeys: a review. Apidologie 35:S4-S17 (2004).
Finola MS, Lasagno MC and Marioli JM, Microbiological and chemical characterization of honeys from central Argentina. Food Chem 100:1649-1653 (2007).
Alvarez-Suarez JM ed, Bee Products - Chemical and Biological Properties. Springer International Publishing AG, Cham, Switzerland (2017).
Batsoulis AN, Siatis NG, Kimbaris AC, Alissandrakis EK, Pappas CS, Tarantilis PA et al., FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey. J Agric Food Chem 53:207-210 (2005).
Tahir HE, Xiaobo Z, Zhihua L, Jiyong S, Zhai X, Wang S et al., Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem 226:202-211 (2017).
Anjos O, Campos MG, Ruiz PC and Antunes P, Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem 169:218-223 (2015).
Corbett EC and Vichy V, Fourier transform Raman studies of materials and compounds of biological importance - II. The effect of moisture on the molecular structure of the alpha and beta anomers of d-glucose. Spectrochim Acta Part A 47A:1399-1411 (1991).
Jandrić Z, Haughey SA, Frew RD, McComb K, Galvin-King P, Elliott CT et al., Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem 189:52-59 (2015).
Paradkar MM and Irudayaraj J, Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy. Food Chem 76:231-239 (2001).
Anjos O, Santos AJA, Paixão V and Estevinho LM, Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta 178:43-48 (2018).
Nickless EM, Holroyd SE, Stephens JM, Gordon KC and Wargent JJ, Analytical FT-Raman spectroscopy to chemotype Leptospermum scoparium and generate predictive models for screening for dihydroxyacetone levels in floral nectar. J Raman Spectrosc 45:890-894 (2014).
Calvo CP and Vazquez M, Differences between honeydew and blossom honeys: a review. Trends Food Sci Technol 59:79-87 (2017).
Terrab A, Recamales AF, Hernanz D and Heredia FJ, Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chem 88:537-542 (2004).
Conti ME, Lazio region (central Italy) honeys: a survey of mineral content and typical quality parameters. Food Control 11:459-463 (2000).
Hahs-Vaughn D, Applied Multivariate Statistical Concepts. Routledge, New York, NY, USA (2016).
Contributed Indexing:
Keywords: Raman spectroscopy; botanical origin; discrimination; fir honey; pine honey; thyme honey
Entry Date(s):
Date Created: 20201123 Date Completed: 20210716 Latest Revision: 20210716
Update Code:
20240105
DOI:
10.1002/jsfa.10961
PMID:
33226655
Czasopismo naukowe
Background: The authenticity of honey is of high importance since it affects its commercial value. The discrimination of the origin of honey is of prime importance to reinforce consumer trust. In this study, four chemometric models were developed based on the physicochemical parameters according to European and Greek legislation and one using Raman spectroscopy to discriminate Greek honey samples from three commercial monofloral botanical sources.
Results: The results of physicochemical (glucose, fructose, electrical activity) parameters chemometric models showed that the percentage of correct recognition fluctuated from 92.2% to 93.8% with cross-validation 90.6-92.2%, and the placement of test set was 79.0-84.3% successful. The addition of maltose content in the previous discrimination models did not significantly improve the discrimination. The corresponding percentages of the Raman chemometric model were 95.3%, 90.6%, and 84.3%.
Conclusion: The five chemometric models developed presented similar and very satisfactory results. Given that the recording of Raman spectra is simple, fast, a minimal amount of sample is needed for the analysis, no solvent (environmentally friendly) is used, and no specialized personnel are required, we conclude that the chemometric model based on Raman spectroscopy is an efficient tool to discriminate the botanical origin of fir, pine, and thyme honey varieties. © 2020 Society of Chemical Industry.
(© 2020 Society of Chemical Industry.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies