Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line.

Tytuł:
Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line.
Autorzy:
Zhang M; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
Liu J; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
Ma Q; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
Qin Y; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
Wang H; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
Chen P; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
Ma L; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
Fu X; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
Zhu L; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
Wei H; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China. .
Yu S; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China. .
Źródło:
BMC genomics [BMC Genomics] 2020 Nov 23; Vol. 21 (1), pp. 825. Date of Electronic Publication: 2020 Nov 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2000-
MeSH Terms:
Flowers*/genetics
Flowers*/metabolism
Lipids*
Plant Infertility*/genetics
Gossypium/*genetics
Gene Expression Profiling ; Gene Expression Regulation, Plant ; Plant Proteins/genetics
References:
Plant Cell. 2013 May;25(5):1609-24. (PMID: 23709630)
Mol Plant. 2011 Nov;4(6):985-95. (PMID: 21511810)
Plant J. 2003 Jan;33(2):413-23. (PMID: 12535353)
Nat Commun. 2018 Feb 9;9(1):604. (PMID: 29426861)
Plant Physiol. 2017 Jan;173(1):240-255. (PMID: 27246096)
Plant Signal Behav. 2010 Sep;5(9):1121-3. (PMID: 20930527)
Plant Cell Environ. 2019 Dec;42(12):3340-3354. (PMID: 31380565)
Plant Cell. 2004;16 Suppl:S142-53. (PMID: 15037731)
Plant J. 2013 Sep;75(5):823-35. (PMID: 23662698)
Plant Physiol. 2011 Jun;156(2):615-30. (PMID: 21515697)
BMC Plant Biol. 2014 Dec 30;14:390. (PMID: 25547499)
Plant Mol Biol. 2005 Jan;57(2):155-71. (PMID: 15821875)
New Phytol. 2018 Jul;219(1):163-175. (PMID: 29655284)
J Integr Plant Biol. 2013 Jul;55(7):608-18. (PMID: 23691935)
BMC Genomics. 2018 Dec 6;19(1):882. (PMID: 30522448)
Front Plant Sci. 2015 Oct 26;6:908. (PMID: 26579158)
Plant Cell. 2014 Apr 1;26(4):1666-1680. (PMID: 24692420)
Nat Genet. 2019 Feb;51(2):224-229. (PMID: 30510239)
Phytochemistry. 2010 Feb;71(2-3):168-78. (PMID: 19939422)
Plant J. 2016 Dec;88(6):936-946. (PMID: 27460657)
Plant Physiol. 2005 May;138(1):478-89. (PMID: 15849306)
J Integr Plant Biol. 2014 Oct;56(10):979-94. (PMID: 24798002)
Plant Cell. 2006 Nov;18(11):2999-3014. (PMID: 17138695)
Plant J. 2001 Oct;28(1):27-39. (PMID: 11696184)
Plant Cell. 2011 Jun;23(6):2225-46. (PMID: 21705642)
Theor Appl Genet. 2019 Jul;132(7):2069-2086. (PMID: 30953093)
New Phytol. 2020 Jan;225(2):807-822. (PMID: 31486533)
Mitochondrion. 2014 Nov;19 Pt B:198-205. (PMID: 24732436)
Plant Physiol. 2007 Jul;144(3):1467-80. (PMID: 17468211)
Nat Commun. 2014 Sep 11;5:4884. (PMID: 25208476)
Plant Physiol. 2005 Jun;138(2):1083-96. (PMID: 15923334)
Cell Res. 2012 Apr;22(4):649-60. (PMID: 22349461)
PLoS Genet. 2011 May;7(5):e1001388. (PMID: 21637781)
Rice (N Y). 2019 Aug 14;12(1):66. (PMID: 31414258)
BMC Plant Biol. 2016 Apr 21;16:95. (PMID: 27098458)
Plant Physiol. 2017 Jul;174(3):1348-1358. (PMID: 28483877)
Plant Signal Behav. 2008 Nov;3(11):978-80. (PMID: 19704425)
Plant Signal Behav. 2013 Nov;8(11):e26826. (PMID: 24169067)
Plant Physiol. 2011 Oct;157(2):842-53. (PMID: 21813653)
Plant Cell. 2011 Mar;23(3):1138-52. (PMID: 21398568)
Plant Cell Physiol. 2012 Aug;53(8):1391-403. (PMID: 22891199)
Plant Cell. 1995 Dec;7(12):2115-27. (PMID: 8718622)
Plant Cell. 2006 Nov;18(11):3015-32. (PMID: 17138699)
Photochem Photobiol Sci. 2008 Oct;7(10):1188-95. (PMID: 18846282)
BMC Plant Biol. 2019 Aug 19;19(1):362. (PMID: 31426743)
Plant Cell. 1999 May;11(5):825-38. (PMID: 10330468)
Plant J. 2010 Nov;64(3):482-97. (PMID: 20807209)
Plant J. 2011 Nov;68(4):715-26. (PMID: 21790813)
PLoS Pathog. 2011 Jul;7(7):e1002148. (PMID: 21829351)
BMC Genomics. 2019 Aug 5;20(1):633. (PMID: 31382896)
Plant Cell. 1996 Sep;8(9):1627-39. (PMID: 8837513)
Plant Physiol. 2017 Jan;173(1):183-205. (PMID: 27837085)
Planta. 1999 Jun;208(4):588-98. (PMID: 10420651)
Plant J. 2009 Aug;59(4):553-64. (PMID: 19392700)
Photochem Photobiol Sci. 2008 Oct;7(10):1243-52. (PMID: 18846290)
Plant Cell. 2008 Mar;20(3):752-67. (PMID: 18326828)
PeerJ. 2017 May 30;5:e3408. (PMID: 28584730)
Plant J. 2018 Apr;94(1):60-76. (PMID: 29385650)
Plant Physiol. 2009 Dec;151(4):1918-29. (PMID: 19819982)
J Exp Bot. 2017 Jan 1;68(3):513-526. (PMID: 28082511)
Arabidopsis Book. 2013 Dec 27;11:e0167. (PMID: 24465172)
BMC Plant Biol. 2018 Sep 24;18(1):209. (PMID: 30249187)
Plant Cell. 2000 Oct;12(10):2001-8. (PMID: 11041893)
Int J Mol Sci. 2017 Oct 25;18(11):. (PMID: 29068396)
Plant Mol Biol. 1995 May;28(2):245-56. (PMID: 7599310)
Nat Plants. 2020 Apr;6(4):360-367. (PMID: 32231254)
Plant Cell. 2005 Mar;17(3):705-21. (PMID: 15722475)
Plant Cell. 2007 May;19(5):1473-87. (PMID: 17496121)
Ann Bot. 2014 Apr;113(5):777-88. (PMID: 24489019)
Plant J. 2017 Jul;91(2):263-277. (PMID: 28378445)
Plant Cell Rep. 2015 Apr;34(4):557-72. (PMID: 25693495)
Plant Cell. 2010 Mar;22(3):672-89. (PMID: 20305120)
Plant Cell. 2009 Sep;21(9):2733-49. (PMID: 19794119)
Gene. 2018 Jun 20;660:80-91. (PMID: 29577977)
Plant J. 2012 Nov;72(4):612-24. (PMID: 22775442)
BMC Bioinformatics. 2008 Dec 29;9:559. (PMID: 19114008)
J Exp Bot. 2009;60(1):301-13. (PMID: 19039102)
Plant Physiol. 2009 Oct;151(2):574-89. (PMID: 19700560)
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3474-9. (PMID: 16492736)
J Proteomics. 2015 Aug 3;126:68-81. (PMID: 26047712)
Cell Res. 2010 Jun;20(6):688-700. (PMID: 20404857)
Plant J. 1997 Sep;12(3):515-26. (PMID: 9351239)
Int J Mol Sci. 2019 Dec 11;20(24):. (PMID: 31835796)
Front Plant Sci. 2019 Aug 02;10:992. (PMID: 31428115)
PLoS One. 2015 Jan 02;10(1):e116676. (PMID: 25555239)
Plant Physiol. 2002 Aug;129(4):1568-80. (PMID: 12177469)
Int J Mol Sci. 2019 Oct 16;20(20):. (PMID: 31623069)
Prog Lipid Res. 2003 Jan;42(1):51-80. (PMID: 12467640)
Biochem Biophys Res Commun. 2016 Jun 24;475(2):223-9. (PMID: 27208780)
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2654-9. (PMID: 22308482)
Plant Physiol. 2017 Jul;174(3):1384-1398. (PMID: 28483881)
Planta. 2012 Jan;235(1):39-52. (PMID: 21809091)
Plant Cell Physiol. 2016 Nov;57(11):2300-2311. (PMID: 27577115)
Plant Physiol. 2017 Oct;175(2):746-757. (PMID: 28807930)
Int J Mol Sci. 2019 Dec 05;20(24):. (PMID: 31817342)
Mol Plant. 2013 Mar;6(2):246-9. (PMID: 23253604)
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12084-12093. (PMID: 31123151)
Plant Physiol. 2008 Jun;147(2):650-60. (PMID: 18441219)
Ann Bot. 2009 Dec;104(7):1339-51. (PMID: 19815569)
Mol Genet Genomics. 2018 Dec;293(6):1317-1331. (PMID: 29943288)
Plant Cell. 2010 Jan;22(1):173-90. (PMID: 20086189)
Plant Signal Behav. 2010 Dec;5(12):1629-32. (PMID: 21139430)
BMC Plant Biol. 2012 Nov 15;12:215. (PMID: 23153247)
New Phytol. 2020 Mar;225(5):2077-2093. (PMID: 31663135)
Grant Information:
31501344 National Natural Science Foundation of China
Contributed Indexing:
Keywords: ABA; Anther cuticle; Cotton; Exine; MYB TFs; Photosensitive genetic male sterile (PGMS); Tryphine
Substance Nomenclature:
0 (Lipids)
0 (Plant Proteins)
0 (tryphine)
Entry Date(s):
Date Created: 20201124 Date Completed: 20210514 Latest Revision: 20220531
Update Code:
20240105
PubMed Central ID:
PMC7685665
DOI:
10.1186/s12864-020-07250-1
PMID:
33228563
Czasopismo naukowe
Background: Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, little information concerning the male sterility of CCRI9106 is known. Here, comparative transcriptome analysis of CCRI9106 (the mutant, MT) and CCRI040029 (the wild type, WT) anthers in Anyang (long-day, male sterile condition to CCRI9106) was performed to reveal the potential male sterile mechanism of CCRI9106.
Results: Light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, anther RNA libraries (18 in total) of tetrad (TTP), late uninucleate (lUNP) and binucleate (BNP) stages in MT and WT were constructed for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA). Additionally, the ABA content of MT anthers was reduced across all stages when compared with WT anthers. At last, genes related to the formation of anther cuticle and tryphine could activated in MT under short-day condition.
Conclusions: We propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA played key regulatory roles in these processes. The conversion of fertility in different photoperiods may closely relate to the functional expression of these genes. These findings contribute to elucidate the mechanism of male sterility in upland cotton.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies