Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Development and biochemical characterization of the monoclonal antibodies for specific detection of the emerging H5N8 and H5Nx avian influenza virus hemagglutinins.

Tytuł:
Development and biochemical characterization of the monoclonal antibodies for specific detection of the emerging H5N8 and H5Nx avian influenza virus hemagglutinins.
Autorzy:
Cheng YC; Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
Chang SC; Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan. .; Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .
Źródło:
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2021 Jan; Vol. 105 (1), pp. 235-245. Date of Electronic Publication: 2020 Nov 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin ; New York : Springer International, c1984-
MeSH Terms:
Influenza A Virus, H1N1 Subtype*
Influenza A Virus, H5N1 Subtype*/genetics
Influenza A Virus, H7N9 Subtype*
Influenza in Birds*/diagnosis
Animals ; Antibodies, Monoclonal ; Hemagglutinin Glycoproteins, Influenza Virus/genetics ; Hemagglutinins ; Humans ; Influenza A Virus, H3N2 Subtype
References:
Antigua KJC, Choi WS, Baek YH, Song MS (2019) The emergence and decennary distribution of clade 2.3.4.4 HPAI H5Nx. Microorganisms 7(6):156. (PMID: 6616411)
Bender C, Hall H, Huang J, Klimov A, Cox N, Hay A, Gregory V, Cameron K, Lim W, Subbarao K (1999) Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997-1998. Virology 254(1):115–123. (PMID: 9927579)
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. (PMID: 942051942051)
Chen HM, Chang SC, Wu CC, Cuo TS, Wu JS, Juang RH (2002) Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114(4):506–515. (PMID: 11975723)
Chen YC, Chen CH, Wang CH (2008) H5 antibody detection by blocking enzyme-linked immunosorbent assay using a monoclonal antibody. Avian Dis 52(1):124–129. (PMID: 18459308)
Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351(9101):472–477. (PMID: 9482438)
Cui S, Tong G (2008) A chromatographic strip test for rapid detection of one lineage of the H5 subtype of highly pathogenic avian influenza. J Vet Diagn Investig 20(5):567–571.
Dhingra MS, Artois J, Robinson TP, Linard C, Chaiban C, Xenarios I, Engler R, Liechti R, Kuznetsov D, Xiao X, Dobschuetz SV, Claes F, Newman SH, Dauphin G, Gilbert M (2016) Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. eLife 5:e19571. (PMID: 278859885161450)
Dunand CJH, Leon PE, Huang M, Choi A, Chromikova V, Ho IY, Tan GS, Cruz J, Hirsh A, Zheng NY, Mullarkey CE, Ennis FA, Terajima M, Treanor JJ, Topham DJ, Subbarao K, Palese P, Krammer F, Wilson PC (2016) Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies confer protection. Cell Host Microbe 19(6):800–813.
Ehrhardt C, Seyer R, Hrincius ER, Eierhoff T, Wolff T, Ludwig S (2010) Interplay between influenza A virus and the innate immune signaling. Microbes Infect 12(1):81–87. (PMID: 19782761)
Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924):246–251. (PMID: 192515912758658)
Ghafouri SA, GhalyanchiLangeroudi A, Maghsoudloo H, Kh Farahani R, Abdollahi H, Tehrani F, Fallah MH (2017) Clade 2.3.4.4 avian influenza A (H5N8) outbreak in commercial poultry, Iran, 2016: the first report and update data. Trop Anim Health Prod 49(5):1089–1093. (PMID: 28478526)
Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyrting KC, Krauss S, Zhang LJ, Webster RG, Shortridge KF (2002) Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99(13):8950–8955. (PMID: 12077307124404)
Harfoot R, Webby RJ (2017) H5 influenza, a global update. J Microbiol 55(3):196–203. (PMID: 28243942)
He Q, Velumani S, Du Q, Lim CW, Ng FK, Donis R, Kwang J (2007) Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. Clin Vaccine Immunol 14(5):617–623. (PMID: 173443451865641)
Hu CJ, Chien CY, Liu MT, Fang ZS, Chang SY, Juang RH, Chang SC, Chen HW (2017) Multi-antigen avian influenza A (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol 17(1):2. (PMID: 280618485219756)
Kim YI, Pascua PN, Kwon HI, Lim GJ, Kim EH, Yoon SW, Park SJ, Kim SM, Choi EJ, Si YJ, Lee OJ, Shim WS, Kim SW, Mo IP, Bae Y, Lim YT, Sung MH, Kim CJ, Webby RJ, Webster RG, Choi YK (2014) Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerg Microbes Infect 3(10):e75. (PMID: 260384994217095)
Lee DH, Bertran K, Kwon JH, Swayne DE (2017) Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci 18(S1):269–280. (PMID: 288592675583414)
Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430(6996):209–213. (PMID: 15241415)
Li M, Liu H, Bi Y, Sun J, Wong G, Liu D, Li L, Liu J, Chen Q, Wang H, He Y, Shi W, Gao GF, Chen J (2017) Highly pathogenic avian influenza A(H5N8) virus in wild migratory birds, Qinghai Lake, China. Emerg Infect Dis 23(4):637–641. (PMID: 281698275367427)
Mair CM, Ludwig K, Herrmann A, Sieben C (2014) Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta 1838(4):1153–1168. (PMID: 24161712)
Nagarajan S, Kumar M, Murugkar HV, Tripathi S, Shukla S, Agarwal S, Dubey G, Nagi RS, Singh VP, Tosh C (2017) Novel reassortant highly pathogenic avian influenza (H5N8) virus in zoos, India. Emerg Infect Dis 23(4):717–719. (PMID: 281170315367432)
Nunez IA, Ross TM (2019) A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 7:2515135518821625. (PMID: 308343596391539)
Ohkawara A, Okamatsu M, Ozawa M, Chu DH, Nguyen LT, Hiono T, Matsuno K, Kida H, Sakoda Y (2017) Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiol Immunol 61(5):149–158. (PMID: 28370432)
Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA (2006) Global patterns of influenza A virus in wild birds. Science 312(5772):384–388. (PMID: 16627734)
Pohlmann A, Starick E, Harder T, Grund C, Hoper D, Globig A, Staubach C, Dietze K, Strebelow G, Ulrich RG, Schinkothe J, Teifke JP, Conraths FJ, Mettenleiter TC, Beer M (2017) Outbreaks among wild birds and domestic poultry caused by reassorted influenza A(H5N8) clade 2.3.4.4 viruses, Germany, 2016. Emerg Infect Dis 23(4):633–636. (PMID: 280558195367393)
Selim AA, Erfan AM, Hagag N, Zanaty A, Samir AH, Samy M, Abdelhalim A, Arafa AA, Soliman MA, Shaheen M, Ibraheem EM, Mahrous I, Hassan MK, Naguib MM (2017) Highly pathogenic avian influenza virus (H5N8) clade 2.3.4.4 infection in migratory birds, Egypt. Emerg Infect Dis 23(6):1048–1051. (PMID: 285180405443452)
Smith GJ, Donis RO, World Health Organization/World Organisation for Animal HF, Agriculture Organization HEWG (2015) Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014. Influenza Other Respir Viruses 9(5):271–276. (PMID: 259663114548997)
Steinhauer DA (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258(1):1–20. (PMID: 10329563)
Tan GS, Krammer F, Eggink D, Kongchanagul A, Moran TM, Palese P (2012) A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J Virol 86(11):6179–6188. (PMID: 224914563372189)
Tate MD (2018) Highly pathogenic avian H5N8 influenza viruses: should we be concerned? Virulence 9(1):20–21. (PMID: 28968185)
Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J (2008) Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3(12):e3942. (PMID: 190796042596486)
Tsuda Y, Sakoda Y, Sakabe S, Mochizuki T, Namba Y, Kida H (2007) Development of an immunochromatographic kit for rapid diagnosis of H5 avian influenza virus infection. Microbiol Immunol 51(9):903–907. (PMID: 17895608)
Wan XF (2012) Lessons from emergence of A/goose/Guangdong/1996-like H5N1 highly pathogenic avian influenza viruses and recent influenza surveillance efforts in southern China. Zoonoses Public Health 59(s2):32–42. (PMID: 229582484119829)
Xu X, Subbarao CNJ, Guo Y (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261(1):15–19. (PMID: 10484749)
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W (2020) Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 30(3):e2099. (PMID: 32135031)
Grant Information:
MOST108-2313-B-002-011 and MOST107-2313-B-002-045 Ministry of Science and Technology, Taiwan
Contributed Indexing:
Keywords: Epidemic prevention; Epitope sequence; Hemagglutinin; Highly pathogenic avian influenza A(H5N8) virus; Monoclonal antibody
Substance Nomenclature:
0 (Antibodies, Monoclonal)
0 (Hemagglutinin Glycoproteins, Influenza Virus)
0 (Hemagglutinins)
Entry Date(s):
Date Created: 20201127 Date Completed: 20210514 Latest Revision: 20210514
Update Code:
20240105
DOI:
10.1007/s00253-020-11035-7
PMID:
33245391
Czasopismo naukowe
The highly pathogenic avian influenza (HPAI) H5N8 virus has been detected in wild birds and poultry worldwide. The threat caused by HPAI H5N8 virus still exists with concerns for human infection. The preparedness for epidemic prevention and decreasing the agricultural and economic lost is extremely important. Hemagglutinin (HA), a surface glycoprotein of influenza viruses, is considered as the major target for detection of the influenza virus subtype in the infected samples. In this study, the recombinant H5N8 HA1 and HA2 proteins were expressed in Escherichia coli, and were utilized to generate two monoclonal antibodies, named 7H6C and YC8. 7H6C can bind the HA proteins of H5N1 and H5N8, but cannot bind the HA proteins of H1N1, H3N2, and H7N9, indicating that it has H5-subtype specificity. In contrast, YC8 can bind the HA proteins of H1N1, H5N1, and H5N8, but cannot bind the HA proteins of H3N2 and H7N9, indicating that it has H1-subtype and H5-subtype specificity. The epitope sequences recognized by 7H6C are located in the head domain of H5N8 HA, and are highly conserved in H5 subtypes. The epitope sequences recognized by YC8 are located in the stalk domain of H5N8 HA, and are highly conserved among the H1 and H5 subtypes. 7H6C and YC8 can be applied for specific detection of the HA proteins of H5N8 and H5Nx avian influenza viruses. KEY POINTS: • The mAb 7H6C or YC8 was generated by using the HA1 or HA2 of the HPAI H5N8 virus as the immunogen. • 7H6C recognized the head domain of H5N8 HA, and YC8 recognized the stalk domain of H5N8 HA. • 7H6C and YC8 can detect the HA proteins of H5Nx subtypes specifically.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies