Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Harnessing Plasma Environments for Ammonia Catalysis: Mechanistic Insights from Experiments and Large-Scale Ab Initio Molecular Dynamics.

Tytuł:
Harnessing Plasma Environments for Ammonia Catalysis: Mechanistic Insights from Experiments and Large-Scale Ab Initio Molecular Dynamics.
Autorzy:
Yamijala SSRKC; Department of Chemical & Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States.
Nava G; Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92521, United States.
Ali ZA; Department of Chemical & Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States.
Beretta D; Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Wong BM; Department of Chemical & Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States.; Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States.
Mangolini L; Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92521, United States.; Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States.
Źródło:
The journal of physical chemistry letters [J Phys Chem Lett] 2020 Dec 17; Vol. 11 (24), pp. 10469-10475. Date of Electronic Publication: 2020 Dec 03.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Washington, D.C. : American Chemical Society
Entry Date(s):
Date Created: 20201203 Latest Revision: 20201217
Update Code:
20240104
DOI:
10.1021/acs.jpclett.0c03021
PMID:
33270457
Czasopismo naukowe
By combining experimental measurements with ab initio molecular dynamics simulations, we provide the first microscopic description of the interaction between metal surfaces and a low-temperature nitrogen-hydrogen plasma. Our study focuses on the dissociation of hydrogen and nitrogen as the main activation route. We find that ammonia forms via an Eley-Rideal mechanism where atomic nitrogen abstracts hydrogen from the catalyst surface to form ammonia on an extremely short time scale (a few picoseconds). On copper, ammonia formation occurs via the interaction between plasma-produced atomic nitrogen and the H-terminated surface. On platinum, however, we find that surface saturation with NH groups is necessary for ammonia production to occur. Regardless of the metal surface, the reaction is limited by the mass transport of atomic nitrogen, consistent with the weak dependence on catalyst material that we observe and has been reported by several other groups. This study represents a significant step toward achieving a mechanistic, microscopic-scale understanding of catalytic processes activated in low-temperature plasma environments.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies