Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Responsive polymer-assisted 3D cryogel supports Huh7.5 as in vitro hepatitis C virus model and ectopic human hepatic tissue in athymic mice.

Tytuł:
Responsive polymer-assisted 3D cryogel supports Huh7.5 as in vitro hepatitis C virus model and ectopic human hepatic tissue in athymic mice.
Autorzy:
Jayal P; Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India.
Behera P; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India.
Mullick R; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India.
Ramachandra SG; Centre for Animal Facility, Indian Institute of Science, Bangalore, Karnataka, India.
Das S; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India.
Kumar A; Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
Karande A; Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India.
Źródło:
Biotechnology and bioengineering [Biotechnol Bioeng] 2021 Mar; Vol. 118 (3), pp. 1286-1304. Date of Electronic Publication: 2020 Dec 25.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
MeSH Terms:
Liver*/metabolism
Liver*/virology
Liver Transplantation*
Cryogels/*pharmacology
Hepacivirus/*metabolism
Hepatitis C/*metabolism
Alginates/chemistry ; Alginates/pharmacology ; Animals ; Disease Models, Animal ; Gelatin/chemistry ; Gelatin/pharmacology ; Heterografts ; Humans ; Mice ; Mice, Nude ; Polyethylene Glycols/chemistry ; Polyethylene Glycols/pharmacology
References:
Aijaz, S., Balda, M. S., & Matter, K. (2006). Tight junctions: Molecular architecture and function. International Review of Cytology, 248(6), 261-298. https://doi.org/10.1016/S0074-7696(06)48005-0.
Bates, R. C., Edwards, N. S., & Yates, J. D. (2000). Spheroids and cell survival. Critical Reviews in Oncology/Hematology, 36(2-3), 61-74. https://doi.org/10.1016/S1040-8428(00)00077-9.
Billerbeck, E., Jong, Y., De, Dorner, M., Fuente, C.D.e, & Ploss, A. (2013). Hepatitis C virus: From molecular virology to antiviral therapy (Vol. 369). https://doi.org/10.1007/978-3-642-27340-7.
Bružauskaitė, I., Bironaitė, D., Bagdonas, E., & Bernotienė, E. (2016). Scaffolds and cells for tissue regeneration: Different scaffold pore sizes-different cell effects. Cytotechnology, 68(3), 355-369. https://doi.org/10.1007/s10616-015-9895-4.
Chaudhari, P., Tian, L., Deshmukh, A., & Jang, Y. Y. (2016). Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment. Experimental Biology and Medicine, 241(15), 1653-1662. https://doi.org/10.1177/1535370216657901.
Chen, A. A., Thomas, D. K., Ong, L. L., Schwartz, R. E., Golub, T. R., & Bhatia, S. N. (2011). Humanized mice with ectopic artificial liver tissues. Proceedings of the National Academy of Sciences, 108(29), 11842-11847. https://doi.org/10.1073/pnas.1101791108.
Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156-159. https://doi.org/10.1016/0003-2697(87)90021-2.
Costantini, S., Bernardo, G. D., Cammarota, M., Castello, G., & Colonna, G. (2013). Gene expression signature of human HepG2 cell line. Gene, 518(2), 335-345.
Das, S., Shetty, R. K., Kumar, A., Shridharan, R. N., Tatineni, R., Chi, G., Mukherjee, A., Das, S., Subbarao, S. M., & Karande, A. A. (2013). Monoclonal antibodies against hepatitis C genotype 3a virus like particle inhibit virus entry in cell culture system. PLOS One, 8(1), e53619. https://doi.org/10.1371/journal.pone.0053619.
Dubiak-Szepietowska, M., Karczmarczyk, A., Jönsson-Niedziółka, M., Winckler, T., & Feller, K. H. (2016). Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro. Toxicology and Applied Pharmacology, 294, 78-85. https://doi.org/10.1016/j.taap.2016.01.016.
Easter, D. W., Wade, J. B., & Boyer, J. L. (1983). Structural integrity of hepatocyte tight junctions. Journal of Cell Biology, 96(3), 745-749. https://doi.org/10.1083/jcb.96.3.745.
Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY and Drug Development Technologies, 12(4), 207-218. https://doi.org/10.1089/adt.2014.573.
El-diwany, R., Wasilewski, L. N., Witwer, K. W., Bailey, J. R., Page, K., Ray, S. C., Cox, A. L., & Thomas, D. L. (2015). Acute hepatitis C virus infection induces consistent changes in circulating microRNAs that are associated with nonlytic hepatocyte release. Journal of Virology, 89(18), 9454-9464. https://doi.org/10.1128/JVI.00955-15.
Evans, M. J., Von Hahn, T., Tscherne, D. M., Syder, A. J., Panis, M., Wölk, B., Hatziioannou, T., McKeating, J. A., Bieniasz, P. D., & Rice, C. M. (2007). Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 446(7137), 801-805. https://doi.org/10.1038/nature05654.
Fénéant, L., Levy, S., & Cocquerel, L. (2014). CD81 and hepatitis C virus (HCV) infection. Viruses, 6(2), 535-572. https://doi.org/10.3390/v6020535.
Gadadhar, S., & Karande, A. A. (2013). Abrin Immunotoxin: Targeted Cytotoxicity and Intracellular Trafficking Pathway. PLOS One, 8(3), 1-11. https://doi.org/10.1371/journal.pone.0058304.
Gires, O. (2012). EpCAM in hepatocytes and their progenitors. Journal of Hepatology, 56(2), 490-492. https://doi.org/10.1016/j.jhep.2011.05.036.
Hecht, H., & Srebnik, S. (2016). Structural characterization of sodium alginate and calcium alginate. Biomacromolecules, 17(6), 2160-2167. https://doi.org/10.1021/acs.biomac.6b00378.
Hwang, Y., Zhang, C., & Varghese, S. (2010). Poly(ethylene glycol) cryogels as potential cell scaffolds: Effect of polymerization conditions on cryogel microstructure and properties. Journal of Materials Chemistry, 20(2), 345-351. https://doi.org/10.1039/B917142H.
Jopling, C. L. (2014). Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science, 309(5740), 1577-1581. https://doi.org/10.1126/science.1113329.
Kamihira, M., Yamada, K., Hamamoto, R., & Iijima, S. (1997). Spheroid formation of hepatocytes using synthetic polymer. Annals of the New York Academy of Sciences, 831, 398-407http://www.ncbi.nlm.nih.gov/pubmed/9616730.
Kato, T., Date, T., Murayama, A., Morikawa, K., Akazawa, D., & Wakita, T. (2006). Cell culture and infection system for hepatitis C virus. Nature Protocols, 1(5), 2334-2339. https://doi.org/10.1038/nprot.2006.395.
Kumar, A., Srivastava, A., Galaev, I. Y., & Mattiasson, B. (2007). Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science, 32(10), 1205-1237. https://doi.org/10.1016/j.progpolymsci.2007.05.003.
Kumari, J., Karande, A. A., & Kumar, A. (2016). Combined effect of cryogel matrix and temperature-reversible soluble-insoluble polymer for the development of in vitro human liver tissue. ACS Applied Materials and Interfaces, 8(1), 264-277. https://doi.org/10.1021/acsami.5b08607.
Lin, J., Schyschka, L., Mühl-Benninghaus, R., Neumann, J., Hao, L., Nussler, N., Dooley, S., Liu, L., Stöckle, U., Nussler, A. K., & Ehnert, S. (2012). Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism. Archives of Toxicology, 86(1), 87-95. https://doi.org/10.1007/s00204-011-0733-y.
Liu, S., Yang, W., Shen, L., Turner, J. R., Coyne, C. B., & Wang, T. (2009). Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. Journal of Virology, 83(4), 2011-2014. https://doi.org/10.1128/JVI.01888-08.
Mazzoleni, G., Di Lorenzo, D., & Steimberg, N. (2009). Modelling tissues in 3D: The next future of pharmaco-toxicology and food research? Genes and Nutrition, 4(1), 13-22. https://doi.org/10.1007/s12263-008-0107-0.
Mueller-Klieser, W. (1997). Three-dimensional cell cultures: From molecular mechanisms to clinical applications. American Journal of Physiology-Cell Physiology, 273, C1109-C1123. https://doi.org/10.1152/ajpcell.1997.273.4.c1109.
Ning, B., Ding, J., Yin, C., Zhong, W., Wu, K., Zeng, X., Yang, W., & Chen, Y. (2010). Hepatocyte nuclear factor 4α suppresses the development of hepatocellular carcinoma. Cancer Research, 70(19), 7640-7652. https://doi.org/10.1158/0008-5472.CAN-10-0824.
Oelschlaeger, C., Bossler, F., & Willenbacher, N. (2016). Synthesis, structural and micromechanical properties of 3D hyaluronic acid-based cryogel scaffolds. Biomacromolecules, 17, 580-589. https://doi.org/10.1021/acs.biomac.5b01529.
Onzalez, F. J. G. (2008). Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription. Drug Metabolism and Pharmacokinetics, 23(1), 2-7.
Park, K. H., Na, K., Sung, W. K., Sung, Y. J., Kyu, H. P., & Chung, H. M. (2005). Phenotype of hepatocyte spheroids behavior within thermo-sensitive poly(NiPAAm-co-PEG-g-GRGDS) hydrogel as a cell delivery vehicle. Biotechnology Letters, 27(15), 1081-1086. https://doi.org/10.1007/s10529-005-8453-0.
Petrie, R. J., Gavara, N., Chadwick, R. S., & Yamada, K. M. (2012). Nonpolarized signaling reveals two distinct modes of 3D cell migration. Journal of Cell Biology, 197(3), 439-455. https://doi.org/10.1083/jcb.201201124.
Pfaffl, M. W. (2007). Relative quantification. In T. Dorak (Ed.), Real-time PCR (pp. 64-82). International University Line.
Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Petracca, R., Weiner, A. J., Houghton, M., Rosa, D., Grandi, G., & Abrignani, S. (1998). Binding of hepatitis C virus to CD81. Science, 282(5390), 938-941. https://doi.org/10.1126/science.282.5390.938.
Quasdorff, M., Hösel, M., Odenthal, M., Zedler, U., Bohne, F., Gripon, P., Dienes, H. P., Drebber, U., Stippel, D., Goeser, T., & Protzer, U. (2008). A concerted action of HNF4α and HNF1α links hepatitis B virus replication to hepatocyte differentiation. Cellular Microbiology, 10(7), 1478-1490. https://doi.org/10.1111/j.1462-5822.2008.01141.x.
Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., & Paul Solomon, F. D. (2015). 3D cell culture systems: Advantages and applications. Journal of Cellular Physiology, 230(1), 16-26. https://doi.org/10.1002/jcp.24683.
Rossouw, C. L., Chetty, A., Moolman, F. S., Birkholtz, L. M., Hoppe, H., & Mancama, D. T. (2012). Thermo-responsive non-woven scaffolds for “smart” 3D cell culture. Biotechnology and Bioengineering, 109(8), 2147-2158. https://doi.org/10.1002/bit.24469.
Sarkar, J., Kumari, J., Tonello, J. M., Kamihira, M., & Kumar, A. (2017). Enhanced hepatic functions of genetically modified mouse hepatoma cells by spheroid culture for drug toxicity screening. Biotechnology Journal, 12(10), 1-9. https://doi.org/10.1002/biot.201700274.
Scarselli, E., Ansuini, H., Cerino, R., Roccasecca, R., Acali, S., Filocamo, G., Traboni, C., Nicosia, A., Cortese, R., & Vitelli, A. (2002). The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO Journal, 21(19), 5017-5025. https://doi.org/10.1093/emboj/cdf529.
Schnell, U., Cirulli, V., & Giepmans, B. N. G. (2013). EpCAM: Structure and function in health and disease. Biochimica et Biophysica Acta-Biomembranes, 1828(8), 1989-2001. https://doi.org/10.1016/j.bbamem.2013.04.018.
Schult, P., Roth, H., Adams, R. L., Mas, C., Imbert, L., Orlik, C., Ruggieri, A., Pyle, A. M., & Lohmann, V. (2018). MicroRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nature Communications, 9(1), 2613. https://doi.org/10.1038/s41467-018-05053-3.
Steenbergen, R. H. G., Joyce, M. A., Thomas, B. S., Jones, D., Law, J., Russell, R., Houghton, M., & Tyrrell, D. L. (2013). Human serum leads to differentiation of human hepatoma cells, restoration of very-low-density lipoprotein secretion, and a 1000-fold increase in HCV Japanese fulminant hepatitis type 1 titers. Hepatology, 58(6), 1907-1917. https://doi.org/10.1002/hep.26566.
Turrini, P., Sasso, R., Germoni, S., Marcucci, I., Celluci, A., Di Marco, A., Marra, E., Paonessa, G., Eutropi, A., Laufer, R., Migliaccio, G., & Padron, J. (2006). Development of humanized mice for the study of hepatitis C virus infection. Transplantation Proceedings, 38(4), 1181-1184. https://doi.org/10.1016/j.transproceed.2006.02.149.
Vanwolleghem, T., Libbrecht, L., Hansen, B. E., Desombere, I., Roskams, T., Meuleman, P., & Leroux-Roels, G. (2010). Factors determining successful engraftment of hepatocytes and susceptibility to hepatitis B and C virus infection in uPA-SCID mice. Journal of Hepatology, 53(3), 468-476. https://doi.org/10.1016/j.jhep.2010.03.024.
van Vlierberghe, S., Dubruel, P., & Schacht, E. (2011). Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules, 12(5), 1387-1408. https://doi.org/10.1021/bm200083n.
Wang, L., & Boyer, J. L. (2004). The maintenance and generation of membrane polarity in hepatocytes. Hepatology, 39(4), 892-899. https://doi.org/10.1002/hep.20039.
Wissing, T. B., Bonito, V., Bouten, C. V. C., & Smits, A. I. P. M. (2017). Biomaterial-driven in situ cardiovascular tissue engineering-A multi-disciplinary perspective. NPJ Regenerative Medicine, 2(1), 18. https://doi.org/10.1038/s41536-017-0023-2.
Yamada, K., Kamihira, M., Hamamoto, R., & Iijima, S. (1998). Efficient induction of hepatocyte spheroids in a suspension culture using a water-soluble synthetic polymer as an artificial matrix. Journal of Biochemistry, 123(6), 1017-1023. https://doi.org/10.1093/oxfordjournals.jbchem.a022037.
Zeisel, M. B., Fofana, I., Fafi-Kremer, S., & Baumert, T. F. (2011). Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies. Journal of Hepatology, 54(3), 566-576. https://doi.org/10.1016/j.jhep.2010.10.014.
van Zijl, F., & Mikulits, W. (2010). Hepatospheres: Three dimensional cell cultures resemble physiological conditions of the liver. World Journal of Hepatology, 2(1), 1-7. https://doi.org/10.4254/wjh.v2.i1.1.
Contributed Indexing:
Keywords: ectopic human liver; hepatitis C virus; hepatospheres; pH/temperature responsive polymers; polymeric cryogel
Substance Nomenclature:
0 (Alginates)
0 (Cryogels)
3WJQ0SDW1A (Polyethylene Glycols)
9000-70-8 (Gelatin)
Entry Date(s):
Date Created: 20201209 Date Completed: 20220117 Latest Revision: 20220117
Update Code:
20240104
DOI:
10.1002/bit.27651
PMID:
33295646
Czasopismo naukowe
The three-dimensional (3D) cell culture models serve as the interface between conventional two-dimensional (2D) monolayer culture and animal models. 3D culture offers the best possible model system to understand the pathophysiology of human pathogens such as hepatitis C virus (HCV), which lacks a small animal model, due to narrow host tropism and non-permissiveness of murine hepatocytes. In this study, functionally robust spheroids of HCV permissive Huh7.5 cells were generated, assisted by the temperature or pH-responsive polymers PNIPAAm and Eudragit respectively, followed by the long-term growth of the multilayered 3D aggregates in poly(ethylene glycol) (PEG)-alginate-gelatin (PAG) cryogel. The human serum albumin (HSA), marker of hepatic viability was detected up to 600 ng/ml on 24th day of culture. The 3D spheroid culture exhibited a distinct morphology and transcript levels with the upregulation of hepato-specific transcripts, nuclear factor 4α (HNF4α), transthyretin (TTr), albumin (Alb), phase I and phase II drug-metabolizing genes. The two most important phase I enzymes CYP3A4 and CYP2D6, together responsible for 90% metabolism of drugs exhibited up to 9- and 12-fold increment, respectively in transcripts. The 3D culture was highly permissive to HCV infection and supported higher multiplicity of infection compared to monolayer Huh7.5 culture. Quantitation of high levels of HSA (500-200 ng/ml) in circulation in mice for 32 days asserted integration with host vasculature and in vivo establishment of 3D culture implants as an ectopic human hepatic tissue in mice. The study demonstrates the 3D spheroid Huh7.5 culture as a model for HCV studies and screening potential for anti-HCV drug candidates.
(© 2020 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies