Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Transferability of miRNA-technology to bioprocessing: Influence of cultivation mode and media.

Tytuł:
Transferability of miRNA-technology to bioprocessing: Influence of cultivation mode and media.
Autorzy:
Leroux AC; Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.; Advanced Biotech Applications Corporate Research, Sartorius Stedim Cellca GmbH, Ulm, Germany.
Bartels E; Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.; Operations, Sartorius Stedim Cellca GmbH, Ulm, Germany.
Winter L; Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.; Upstream Process Development, Rentschler Biopharma, Laupheim, Germany.
Mann M; Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.
Otte K; Biology, Cell- and Molecular Biology, Biberach University of Applied Sciences, Biberach an der Riß, Germany.
Zehe C; Advanced Biotech Applications Corporate Research, Sartorius Stedim Cellca GmbH, Ulm, Germany.
Źródło:
Biotechnology progress [Biotechnol Prog] 2021 Mar; Vol. 37 (2), pp. e3107. Date of Electronic Publication: 2020 Dec 30.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2010-> : Hoboken, NJ : Wiley-Blackwell
Original Publication: [New York, N.Y. : American Institute of Chemical Engineers, c1985-
MeSH Terms:
Cell Engineering/*methods
MicroRNAs/*genetics
Microfilament Proteins/*antagonists & inhibitors
Plasmids/*genetics
Protein-Tyrosine Kinases/*antagonists & inhibitors
RNA, Messenger/*genetics
Animals ; CHO Cells ; Cricetinae ; Cricetulus ; Culture Media ; Microfilament Proteins/genetics ; Microfilament Proteins/metabolism ; Protein-Tyrosine Kinases/genetics ; Protein-Tyrosine Kinases/metabolism ; RNA, Messenger/metabolism ; Transfection
References:
PLoS One. 2011;6(8):e22894. (PMID: 21876732)
RNA Biol. 2015;12(8):787-91. (PMID: 26121563)
Biotechnol Prog. 2021 Mar;37(2):e3107. (PMID: 33300297)
Front Genet. 2015 Dec 02;6:340. (PMID: 26697058)
J Cell Sci. 2010 Jul 15;123(Pt 14):2444-52. (PMID: 20571053)
J Proteomics. 2019 Mar 20;195:23-32. (PMID: 30641232)
RNA Biol. 2012 Oct;9(10):1275-87. (PMID: 22995834)
Mol Cell. 2020 Apr 16;78(2):289-302.e6. (PMID: 32302541)
Cytotechnology. 2006 Sep;52(1):55-69. (PMID: 19002865)
J Biol Chem. 2010 Aug 6;285(32):24707-16. (PMID: 20529860)
Biotechnol J. 2019 May;14(5):e1800477. (PMID: 30802343)
Appl Microbiol Biotechnol. 2019 Sep;103(17):7085-7095. (PMID: 31292678)
Nat Struct Mol Biol. 2006 Dec;13(12):1097-101. (PMID: 17099701)
Biotechnol J. 2017 Apr;12(4):. (PMID: 28146316)
J Cell Sci. 2006 Apr 15;119(Pt 8):1547-57. (PMID: 16569665)
Bioorg Med Chem Lett. 2015 Oct 1;25(19):4219-24. (PMID: 26299350)
Nat Rev Mol Cell Biol. 2009 Feb;10(2):126-39. (PMID: 19165215)
Biotechnol Bioeng. 2017 Jul;114(7):1495-1510. (PMID: 28262952)
J Biotechnol. 2016 May 10;225:31-43. (PMID: 27002234)
Nucleic Acids Res. 2013 Oct;41(18):8692-705. (PMID: 23863838)
J Biotechnol. 2014 Apr 10;175:38-44. (PMID: 24518263)
Metab Eng. 2013 Nov;20:157-66. (PMID: 24144501)
Genes Dev. 2004 Mar 1;18(5):504-11. (PMID: 15014042)
Trends Biotechnol. 2012 Aug;30(8):405-6. (PMID: 22673691)
RNA. 2008 Feb;14(2):263-74. (PMID: 18094121)
Front Endocrinol (Lausanne). 2018 Aug 03;9:402. (PMID: 30123182)
Biotechnol J. 2014 Oct;9(10):1279-92. (PMID: 25061012)
Oncotarget. 2017 Jun 27;8(26):42043-42060. (PMID: 28159933)
Biotechnol J. 2014 Mar;9(3):396-404. (PMID: 24166820)
PLoS One. 2011 May 10;6(5):e19391. (PMID: 21572999)
EMBO J. 2004 Oct 13;23(20):4051-60. (PMID: 15372072)
J Biotechnol. 2013 Dec;168(4):589-600. (PMID: 23994267)
Nat Rev Genet. 2008 Feb;9(2):102-14. (PMID: 18197166)
PLoS Biol. 2005 Mar;3(3):e85. (PMID: 15723116)
Int J Mol Sci. 2016 Dec 22;18(1):. (PMID: 28025492)
J Cell Biol. 2017 Sep 4;216(9):2657-2667. (PMID: 28655757)
Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426. (PMID: 30407594)
Biotechnol J. 2014 Apr;9(4):538-44. (PMID: 24323929)
J Biol Chem. 2016 Feb 19;291(8):3785-95. (PMID: 26655220)
PeerJ. 2013 Apr 16;1:e68. (PMID: 23646287)
Metab Eng. 2013 Mar;16:87-94. (PMID: 23376592)
Biotechnol J. 2015 Jul;10(7):1029-40. (PMID: 26097147)
J Biotechnol. 2015 Oct 20;212:32-43. (PMID: 26256096)
ACS Chem Biol. 2012 Feb 17;7(2):403-10. (PMID: 22026461)
RNA. 2009 Jan;15(1):21-32. (PMID: 19029310)
Contributed Indexing:
Keywords: CHO; bioprocess; miRNA
Substance Nomenclature:
0 (Culture Media)
0 (MIRN1 microRNA, human)
0 (MicroRNAs)
0 (Microfilament Proteins)
0 (RNA, Messenger)
0 (TWF1 protein, human)
EC 2.7.10.1 (Protein-Tyrosine Kinases)
Entry Date(s):
Date Created: 20201210 Date Completed: 20220128 Latest Revision: 20220128
Update Code:
20240104
PubMed Central ID:
PMC8244005
DOI:
10.1002/btpr.3107
PMID:
33300297
Czasopismo naukowe
The biopharmaceutical industry strives for improvement of their production processes. In recent years, miRNAs have been shown to positively impact the production capacity of recombinant CHO cells, especially with regard to difficult to express proteins. Effective and reliable gene regulation of process relevant target genes by miRNAs is a prerequisite for integrating them into the toolbox of industrial cell engineering strategies. However, most studies rely on transient transfection of miRNA mimics; there is low standardization in evaluation of miRNA function and little knowledge on transferability of effects found during transient expression to stable expression during industry relevant fed-batch cultivation. In order to provide more insight into this topic, we used the pcDNA6.2 vector for stable miRNA overexpression during batch and fed-batch cultivation in CHO DG44 cells, optimized the vector, and compared the miRNA levels and effects with those achieved by transfection of miRNA mimics. We found that miR-1 downregulated TWF1 mRNA in different recombinant CHO DG44 clones in a dose-dependent manner during transient batch cultivation. Cells stably overexpressing miR-1 also showed a TWF1 mRNA downregulation when cultivated in batch mode using in-house medium 1. However, when the cells stably overexpressing miR-1 were cultivated in fed-batch mode using in-house medium 2. Consequently, a change of cultivation mode and medium seems to have an impact on target gene regulation by miRNA. Taken together, our findings highlight the importance to standardize miRNA evaluations and test miRNAs in the final application environment.
(© 2020 The Authors. Biotechnology Progress published by Wiley Periodicals LLC. on behalf of American Institute of Chemical Engineers.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies