Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A simple estimate of axon size with diffusion MRI.

Tytuł:
A simple estimate of axon size with diffusion MRI.
Autorzy:
Harkins KD; Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States. Electronic address: .
Beaulieu C; Biomedical Engineering, University of Alberta, Canada.
Xu J; Institute of Imaging Science, Vanderbilt University, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States.
Gore JC; Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States.
Does MD; Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States.
Źródło:
NeuroImage [Neuroimage] 2021 Feb 15; Vol. 227, pp. 117619. Date of Electronic Publication: 2020 Dec 08.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Orlando, FL : Academic Press, c1992-
MeSH Terms:
Axons*
Diffusion Magnetic Resonance Imaging/*methods
White Matter/*diagnostic imaging
Algorithms ; Computer Simulation ; Humans ; Image Processing, Computer-Assisted/methods ; Monte Carlo Method
References:
Commun Biol. 2020 Jul 7;3(1):354. (PMID: 32636463)
Brain Struct Funct. 2020 May;225(4):1277-1291. (PMID: 31563995)
Magn Reson Med. 1997 Jan;37(1):103-11. (PMID: 8978638)
Neuroimage. 2018 Nov 15;182:500-510. (PMID: 29253652)
Magn Reson Med. 2020 Jun;83(6):2197-2208. (PMID: 31762110)
Neuroimage. 2014 Dec;103:10-19. (PMID: 25225002)
Phys Med Biol. 2016 Jul 7;61(13):4729-45. (PMID: 27271991)
NMR Biomed. 2019 Dec;32(12):e4170. (PMID: 31573745)
Magn Reson Med. 2012 Mar;67(3):793-800. (PMID: 21713984)
J Magn Reson. 2000 Dec;147(2):232-7. (PMID: 11097814)
Neuroimage. 2019 Jun;193:10-24. (PMID: 30849528)
Neuroimage. 2012 Feb 1;59(3):2241-54. (PMID: 22001791)
Magn Reson Med. 2020 Jun;83(6):2322-2330. (PMID: 31691378)
IEEE Trans Med Imaging. 2009 Sep;28(9):1354-64. (PMID: 19273001)
Magn Reson Med. 2008 Jun;59(6):1347-54. (PMID: 18506799)
Neuroscience. 2014 Sep 12;276:126-34. (PMID: 23820043)
Neuroimage. 2019 Jan 15;185:379-387. (PMID: 30292815)
NMR Biomed. 2017 Jul;30(7):. (PMID: 28318071)
Neuroimage. 2010 Oct 1;52(4):1374-89. (PMID: 20580932)
Neuroimage. 2015 Jul 1;114:18-37. (PMID: 25837598)
Neuroimage. 2015 Feb 1;106:464-72. (PMID: 25498429)
Brain. 2009 May;132(Pt 5):1210-20. (PMID: 19403788)
J Magn Reson B. 1994 Mar;103(3):255-60. (PMID: 8019777)
J Anat. 1983 May;136(Pt 3):483-508. (PMID: 6885614)
Magn Reson Med. 2017 Aug;78(2):550-564. (PMID: 27580027)
Magn Reson Med. 1994 Jun;31(6):673-7. (PMID: 8057820)
Neuroimage. 2016 Apr 1;129:414-427. (PMID: 26804782)
Neuron. 2017 Dec 20;96(6):1239-1251. (PMID: 29268094)
Magn Reson Med. 2014 Sep;72(3):726-36. (PMID: 24142863)
Neuroimage. 2020 Apr 15;210:116533. (PMID: 31935520)
Elife. 2020 Feb 12;9:. (PMID: 32048987)
NMR Biomed. 2016 Apr;29(4):400-10. (PMID: 27077155)
Neuroimage. 2012 Jul 16;61(4):1000-16. (PMID: 22484410)
NMR Biomed. 2010 Aug;23(7):682-97. (PMID: 20886563)
Neuroimage. 2018 Nov 15;182:314-328. (PMID: 28774648)
NMR Biomed. 2019 Apr;32(4):e3998. (PMID: 30321478)
Brain Struct Funct. 2019 May;224(4):1469-1488. (PMID: 30790073)
Nat Rev Neurosci. 2014 Apr;15(4):264-78. (PMID: 24569488)
Magn Reson Med. 2019 Feb;81(2):1247-1264. (PMID: 30229564)
Magn Reson Med. 2016 Feb;75(2):688-700. (PMID: 25809657)
Neuroimage. 2019 Mar;188:391-402. (PMID: 30553045)
Neuroimage. 2010 Jul 15;51(4):1360-6. (PMID: 20350604)
Magn Reson Med. 1993 Jun;29(6):767-75. (PMID: 8350719)
Magn Reson Med. 2015 Jun;73(6):2306-20. (PMID: 25046481)
Grant Information:
P50 HD103537 United States HD NICHD NIH HHS; R01 EB019980 United States EB NIBIB NIH HHS
Contributed Indexing:
Keywords: Axon; Diameter; Diffusion; MRI; Monte Carlo; Oscillating gradient; Pulsed gradient; White matter
Entry Date(s):
Date Created: 20201210 Date Completed: 20210301 Latest Revision: 20220224
Update Code:
20240104
PubMed Central ID:
PMC7949481
DOI:
10.1016/j.neuroimage.2020.117619
PMID:
33301942
Czasopismo naukowe
Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter: the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD . Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.
(Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies