Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Production of biodiesel by Burkholderia cepacia lipase as a function of process parameters.

Tytuł:
Production of biodiesel by Burkholderia cepacia lipase as a function of process parameters.
Autorzy:
Ostojčić M; Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
Budžaki S; Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
Flanjak I; Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
Bilić Rajs B; Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
Barišić I; Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
Tran NN; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia.
Hessel V; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia.
Strelec I; Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
Źródło:
Biotechnology progress [Biotechnol Prog] 2021 Mar; Vol. 37 (2), pp. e3109. Date of Electronic Publication: 2020 Dec 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2010-> : Hoboken, NJ : Wiley-Blackwell
Original Publication: [New York, N.Y. : American Institute of Chemical Engineers, c1985-
MeSH Terms:
Biofuels/*analysis
Burkholderia cepacia/*enzymology
Enzymes, Immobilized/*metabolism
Esters/*metabolism
Fatty Acids/*metabolism
Lipase/*metabolism
Esterification ; Hydrogen-Ion Concentration ; Methyltransferases/metabolism ; Temperature
References:
Chen X, Du W, Liu D. Effect of several factors on soluble lipase-mediated biodiesel preparation in the biphasic aqueous-oil systems. World J Microbiol Biotechnol. 2008;24:2097-2102.
Budhwani AAA, Maqbool A, Hussain T, Syed MN. Production of biodiesel by enzymatic transesterifcation of non-edible Salvadora persica (Pilu) oil and crude coconut oil in a solvent-free system. Bioresour Bioprocess. 2019;6:41.
da Silva APT, Bredda EH, de Castro HF, da Rós PCM. Enzymatic catalysis: an environmentally friendly method to enhance the transesterification of microalgal oil with fusel oil for production of fatty acid esters with potential application as biolubricants. Fuel. 2020;273:117786.
Wancura JHC, Rosset DW, Tres MV, Oliveira JV, Mazutti MA, Jahn SL. Production of biodiesel catalyzed by lipase from Thermomyces Lanuginosus in its soluble form. Can J Chem Eng. 2018a;9999:1-8.
Wancura JHC, Rosset DV Brondani M, Mazutti MA, Oliveira JV, Tres MV, Jahn SL. Soluble lipase-catalyzed synthesis of methyl esters using a blend of edible and nonedible raw materials. Bioprocess Biosyst Eng. 2018b;41:1185-1193.
Malani RS, Umriwad SB, Kumar K, Goyal A, Moholkar VS. Ultrasound-assisted enzymatic biodiesel production using blended feedstock of non-edible oils: kinetic analysis. Energ Conver Manage. 2019;188:142-150.
Cesarini S, Pastor FIJ, Nielsen PM, Diaz P. Moving towards a competitive fully enzymatic biodiesel process. Sustainability. 2015;7:7884-7903.
Budžaki S, Šalić A, Zelić B, Tišma M. Enzyme-catalysed biodiesel production from edible and waste cooking oils. Chem Biochem Eng Q. 2015;29(3):329-333.
Palacios D, Busto M, Ortega N. Study of a new spectrophotometric end-point assay for lipase activity determination in aques media. LWT. 2014;55:536-542.
Mustranta A, Forssell P, Poutanen K. Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems. Enzyme Microb Technol. 1993;15(2):133-139.
Mongay C, Cerda VA. Britton-Robinson buffer of known ionic strength. Ann Chim. 1974;64:409-412.
Chungcharoe T, Netjaibun K, Pratabkong T, Suwannasam P, Limmun W. Effects of inner angle of bowl, flow rate and speed on the efficiency of glycerol separation from the raw biodiesel using cylindrical bowl centrifuge. Energy Procedia. 2017;138:405-410.
Wu XY, Jääskeläinen S, Linko YY. An investigation of crude lipases for hydrolysis, esterification, and transesterification. Enzyme Microb Technol. 1996;19:226-231.
Dalal S, Singh PK, Raghava S, Rawat S, Gupta MN. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609. Biotechnol Appl Biochem. 2008;51:23-31.
Xie C, Wu B, Qin S, He B. A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol. Bioprocess Biosyst Eng. 2016;39:59-66.
Padilha GS, Santana JCC, Alegre RM, Tambourgi EB. Extraction of lipase from Burkholderia cepacia by PEG/phosphate ATPS and its biochemical characterization. Braz Arch Biol Technol. 2012;55(1):7-19.
Wang X, Yu X, Xu Y. Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme Microb Technol. 2009;45(2):94-102.
Yang J, Guo D, Yan Y. Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. J Mol Catal B: Enzym. 2007;45:91-96.
Sigma Aldrich. Products. https://www.sigmaaldrich.com/catalog/product/aldrich/534641?lang=en®ion=HR. Accessed August 3, 2020.
Silva C, Martins M, Jing S, Fu J, Cavaco-Paulo A. Practical insights on enzyme stabilization. Crit Rev Biotechnol. 2018;38:335-350.
Liu T, Liu Y, Wang X, Li Q, Wang J, Yan Y. Improving catalytic performance of Brukholderia cepacia lipase immobilized on macroporous resin NKA. J Mol Catal B: Enzym. 2011;71:45-50.
Jegannathan KR, Chan E-S, Ravindra P. Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in κ-carrageenan. J Mol Catal B: Enzym. 2009;58:78-83.
da Rós PCM, Silva GAM, Mendes AA, Santos JC, de Castro HF. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks. Bioresour Technol. 2010;101:5508-5516.
Liu CH, Chang JS. Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp. C20. Bioresour Technol. 2008;99:1616-1622.
Ungcharoenwiwat P, H-Kittikun A. Purification and characterization of lipase from Burkholderia sp. EQ3 isolated from wastewater from a canned fish factory and its application for the synthesis of wax esters. J Mol Catal B: Enzym. 2015;115:96-104.
Wroniak M, Krygier K, Kaczmarczyk M. Comparison of the quality of cold pressed and virgin rapeseed oils with industrially obtained oils. Pol J Food Nutr Sci. 2008;58:85-89.
Wroniak M, Ratusz K. The quality of cold-pressed rapeseed and sunflowerseed oils from polish market. In: Szłyk E, ed. Advances in Research and Technology of Rapeseed Oil, Monograph-Part III. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika; 2011:105-112.
Kaleem A, Aziz S, Iqtedar M, et al. Investigating changes and effect of peroxide values in cooking oils subject to light and heat. FUUAST J Biol. 2015;5(2):191-196.
Ghobadi S, Akhlaghi M, Shams S, Mazloomi SM. Acid and peroxide values and total polar compounds of frying oils in fast food restaurants of Shiraz, Southern Iran. Int J Nutr Sci. 2018;3(1):25-30.
Ohta Y, Yamane T, Shimizu S. Inhibition and inactivation oflLipase by fat peroxide in the course of batch and continuous glycerolyses of gat by lipase. Agr Biol Chem. 1989;53(7):1885-1890.
Tiosso PC, Carvalho AKF, de Castro HF, de Moraes FF, Zanin GM. Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol. Braz J Chem Eng. 2014;31:839-847.
Budžaki S, Miljić G, Tišma M, Sundaram S, Hessel V. Is there future for enzymatic biodiesel production in microreactors? Appl Energy. 2017;201:124-134.
Yang W, He Y, Xu L, Zhang X, Yan Y. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J Mol Catal B: Enzym. 2016;126:76-89.
Pinotti LM, Benevides LC, Lira TS, de Oliveira JP, Cassini STA. Biodiesel production from oily residues containing high free fatty acids. Waste Biomass Valori. 2018;9:293-299.
Karmee SK. Enzymatic biodiesel production from Manilkara zapota (L.) seed oil. Waste Biomass Valori. 2018;9:725-730.
Murillo G, He Y, Yan Y, et al. Scaled-up biodiesel synthesis from Chinese tallow kernel oil catalyzed by Burkholderia cepacia lipase through ultrasonic assisted technology: a nonedible and alternative source of bio energy. Ultrason Sonochem. 2019;58:104658.
Vingering N, Oseredczuk M, du Chaffaut L, Ireland J, Ledoux M. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column. OCL. 2010;17:185-192.
Yaşar F. Comparison of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel. 2020;264:116817.
Dorni C, Sharma P, Saikia G, Longvah T. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 2018;238:9-15.
Chattopadhyay S, Karemore A, Das S, Deysarkar A, Sen R. Biocatalytic production of biodiesel from cottonseed oil: standardization of process parameters and comparison of fuel characteristics. Appl Energy. 2011;88:1251-1256.
Vipin VC, Sebastian J, Muraleedharan C, Santiagu A. Enzymatic transesterification of rubber seed oil using Rhizopus Oryzae lipase. Proc Technol. 2016;25:1014-1021.
Sandoval G, Casas-Godoy L, Bonet-Ragel K, Rodrigues J, Ferreira-Dias S, Valero F. Enzyme-catalyzed production of biodiesel as alternative to chemical-catalyzed processes: advantages and constraints. Curr Biochem Eng. 2017;4:109-141.
Mounguengui RWM, Brunschwig C, Baréa B, Villeneuve P, Blin J. Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Prog Energ Combust. 2013;39:441-456.
Vargas M, Niehus X, Casas-Godoy L, Sandoval G. Lipases as biocatalyst for biodiesel production. In: Sandoval G, ed. Lipases and Phospholipases. Methods in Molecular Biology. New York, NY: Humana Press; 2018:377-390.
Zhang H, Liu T, Zhu Y, et al. Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from yellow horn seed oil. Renew Energy. 2020;145:1246-1254.
Elgharbawy AA, Riyadi FA, Alam MZ, Moniruzzaman M. Ionic liquids as a potential solvent for lipase-catalysed reactions: a review. J Mol Liq. 2018;251:150-166.
Budžaki S, Miljić G, Sundaram S, Tišma M, Hessel V. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Appl Energy. 2018;210:268-278.
Contributed Indexing:
Keywords: Burkholderia cepacia lipase; biodiesel; pH optimum; substrate specificity; temperature optimum
Substance Nomenclature:
0 (Biofuels)
0 (Enzymes, Immobilized)
0 (Esters)
0 (Fatty Acids)
EC 2.1.1.- (Methyltransferases)
EC 2.1.1.15 (fatty acid methyltransferase)
EC 3.1.1.3 (Lipase)
Entry Date(s):
Date Created: 20201214 Date Completed: 20220128 Latest Revision: 20220128
Update Code:
20240104
DOI:
10.1002/btpr.3109
PMID:
33314760
Czasopismo naukowe
Despite the already established route of chemically catalyzed transesterification reaction in biodiesel production, due to some of its shortcomings, biocatalysts such as lipases present a vital alternative. Namely, it was noticed that one of the key shortcomings for the optimization of the enzyme catalyzed biodiesel synthesis process is the information on the lipase activity in the reaction mixture. In addition to making optimization difficult, it also makes it impossible to compare the results of the independent research. This article shows how lipase intended for use in biodiesel synthesis can be easily and accurately characterized and what is the enzyme concentration that enables achievement of the desired level of fatty acid methyl esters (FAME) in the final product mixture. Therefore, this study investigated the effect of two different activity loads of Burkholderia cepacia lipase on the biodiesel synthesis varying the pH and temperature optimal for lipase activity. The optimal lipase pH and temperature were determined by two different enzyme assays: spectrophotometric and titrimetric. The B. cepacia lipase pH optimum differentiated between assays, while the lipase optimally hydrolyzed substrates at 50°C. The analysis of FAME during 24 hr of biodiesel synthesis, at two different enzyme concentrations, pH 7, 8, and 10, and using two different buffers, revealed that the transesterification reaction at optimal pH, 1 hr reaction time and lipase activity load of 250 U per gram of reaction mixture was sufficient to produce more than 99% FAME.
(© 2020 American Institute of Chemical Engineers.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies