Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

[Proliferative vitreoretinopathy process-To heal or not to heal].

Tytuł:
[Proliferative vitreoretinopathy process-To heal or not to heal].
Autorzy:
Grisanti S; Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Deutschland. .
Priglinger S; Klinik für Augenheilkunde, LMU München, München, Deutschland.
Hattenbach L; Augenheilkunde, Klinikum Ludwigshafen, Ludwigshafen, Deutschland.
Transliterated Title:
Proliferative Vitreoretinopathie-Prozess – „To heal or not to heal“.
Źródło:
Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft [Ophthalmologe] 2021 Jan; Vol. 118 (1), pp. 10-17.
Typ publikacji:
Journal Article; Review
Język:
German
Imprint Name(s):
Original Publication: Berlin ; New York : Springer-Verlag, c1992-
MeSH Terms:
Retinal Detachment*
Vitreoretinopathy, Proliferative*
Cicatrix ; Humans
References:
Machemer R, Aaberg TM, Freeman HM et al (1991) An updated classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol 112:159–165. (PMID: 186729910.1016/S0002-9394(14)76695-4)
de la Rua ER, Pastor JC, Fernandez I et al (2008) Non-complicated retinal detachment management: variations in 4 years. Retina 1 project; report 1. Br J Ophthalmol 92:523–525. (PMID: 1821193810.1136/bjo.2007.127688)
Girard P, Mimoun G, Karpouzas I et al (1994) Clinical risk factors for proliferative vitreoretinopathy after retinal detachment surgery. Retina 14:417–424. (PMID: 789971610.1097/00006982-199414050-00005)
Duquesne N, Bonnet M, Adeleine P (1996) Preoperative vitreous hemorrhage associated with rhegmatogenous retinal detachment: a risk factor for postoperative proliferative vitreoretinopathy? Graefes Arch Clin Exp Ophthalmol 234:677–682. (PMID: 895058710.1007/BF00292353)
Yanyali A, Bonnet M (1996) Risk factors of postoperative proliferative vitreoretinopathy in giant tears. J Fr Ophtalmol 19:175–180. (PMID: 8731766)
Patel NN, Bunce C, Asaria RH, Charteris DG (2004) Resources involved in managing retinal detachment complicated by proliferative vitreoretinopathy. Retina 24:883. (PMID: 1557998510.1097/00006982-200412000-00007)
Kim IK, Arroyo JG (2002) Mechanisms in proliferative vitreoretinopathy. Ophthalmol Clin North Am 15:81–86. (PMID: 1206408510.1016/S0896-1549(01)00008-6)
Tseng W, Cortez RT, Ramirez G et al (2004) Prevalence and risk factors for proliferative vitreoretinopathy in eyes with rhegmatogenous retinal detachment but no previous vitreoretinal surgery. Am J Ophthalmol 137:1105–1115. (PMID: 1518379710.1016/j.ajo.2004.02.008)
Campochiaro PA, Kaden IH, Vidaurri-Leal J et al (1985) Cryotherapy enhances intravitreal dispersion of viable retinal pigment epithelial cells. Arch Ophthalmol 103:434–436. (PMID: 397772010.1001/archopht.1985.01050030130038)
Bonnet M, Guenoun S (1995) Surgical risk factors for severe postoperative proliferative vitreoretinopathy (PVR) in retinal detachment with grade B PVR. Graefes Arch Clin Exp Ophthalmol 233:789–791. (PMID: 862608810.1007/BF00184091)
Bonnet M, Fleury J, Guenoun S et al (1996) Cryopexy in primary rhegmatogenous retinal detachment: a risk factor for postoperative proliferative vitreoretinopathy? Graefes Arch Clin Exp Ophthalmol 234:739–743. (PMID: 898644510.1007/BF00189354)
Sanabria Ruiz-Colmenares MR, Pastor Jimeno JC, Garrote Adrados JA et al (2006) Cytokine gene polymorphisms in retinal detachment patients with and without proliferative vitreoretinopathy: a preliminary study. Acta Ophthalmol Scand 84:309–313. (PMID: 1670468910.1111/j.1600-0420.2005.00600.x)
Rojas J, Fernandez I, Pastor JC et al (2010) A strong genetic association between the tumor necrosis factor locus and proliferative vitreoretinopathy: The Retina 4 Project. Ophthalmology 117:2417–2423. (PMID: 2066356410.1016/j.ophtha.2010.03.059)
Rojas J, Fernandez I, Pastor JC et al (2013) A genetic case-control study confirms the implication of SMAD7 and TNF locus in the development of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 54:1665–1678. (PMID: 2325814810.1167/iovs.12-10931)
Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J et al (2013) The p53 codon 72 polymorphism (rs1042522) is associated with proliferative vitreoretinopathy: the Retina 4 Project. Ophthalmology 120:623–628. (PMID: 2320717210.1016/j.ophtha.2012.08.019)
Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J et al (2013) The T309G MDM2 gene polymorphism is a novel risk factor for proliferative Vitreoretinopathy. PLoS One 12:e82283. (PMID: 10.1371/journal.pone.0082283)
Anonymous (1983) The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 90:121–125. (PMID: 10.1016/S0161-6420(83)34588-7)
Heimann K, Wiedemann P (1989) Cologne classification of proliferative vitreoretinopathy. In: Heimann K, Wiedemann P (Hrsg) Proliferative Vitreoretinopathy. Kaden, Heidelberg, S 148–149.
Lean SW, Stern WH, Irvine AR et al (1989) Classification of proliferative vitrereotinopathy used in the silicone study. Ophthalmology 96:765–771. (PMID: 266209910.1016/S0161-6420(89)32821-1)
Di Lauro S, Kadhim MR, Charteris DG, Pastor JC (2016) Classifications for proliferative vitreoretinopathy (PVR): an analysis of their use in publications over the last 15 years. J Ophthalmol 2016:7807596. (PMID: 27429798493935210.1155/2016/7807596)
Wilkins RB, Kulwin DR (1979) Wendell L. Hughes lecture: wound healing. Ophthalmology 86:507–510. (PMID: 53775510.1016/S0161-6420(79)35490-2537755)
Mietz H, Heimann K (1995) Onset and recurrence of proliferative vitreoretinopathy in various vitreoretinal disease. Br J Ophthalmol 79:874–877. (PMID: 748857250528510.1136/bjo.79.10.874)
Wiedemann P (1992) Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration. Surv Ophthalmol 36:373–384. (PMID: 156624010.1016/0039-6257(92)90115-A1566240)
Moysidis SN, Thanos A, Vavvas DG (2012) Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside. Mediators Inflamm 2012:815937. (PMID: 23049173346380710.1155/2012/815937)
Abu El-Asrar AM, Struyf S, Van Damme J et al (2008) Circulating fibrocytes contribute to the myofibroblast population in proliferative vitreoretinopathy epiretinal membranes. Br J Ophthalmol 92:699–704. (PMID: 1844117610.1136/bjo.2007.134346)
Lin ML, Li YP, Li ZR et al (2011) Macrophages acquire fibroblast characteristics in a rat model of proliferative vitreoretinopathy. Ophthalmic Res 45:180–190. (PMID: 2105191610.1159/000320496)
Sakamoto T, Ishibashi T (2011) Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 31:222–228. (PMID: 2124004310.1097/IAE.0b013e3181facfa9)
Hiscott PS, Grierson I, McLeod D (1985) Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br J Ophthalmol 69:810–823. (PMID: 4063247104075110.1136/bjo.69.11.810)
Ioachim E, Stefaniotou M, Gorezis S et al (2005) Immunohistochemical study of extracellular matrix components in epiretinal membranes of vitreoproliferative retinopathy and proliferative diabetic retinopathy. Eur J Ophthalmol 15:384–391. (PMID: 1594500910.1177/112067210501500312)
Grisanti S, Guidry C (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci 36:391–405. (PMID: 75311857531185)
Guidry C (2005) The role of Müller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 24:75–86. (PMID: 1555552710.1016/j.preteyeres.2004.07.001)
Sramek SJ, Wallow IH, Stevens TS et al (1989) Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 96:835–841. (PMID: 266210310.1016/S0161-6420(89)32817-X)
McGillem GS, Dacheux RF (1999) Rabbit retinal Müller cells undergo antigenic changes in response to experimentally induced proliferative vitreoretinopathy. Exp Eye Res 68:617–627. (PMID: 1032897610.1006/exer.1998.0648)
Garcia S, Lopez E, Lopez-Colome AM (2008) Glutamate accelerates RPE cell proliferation through ERK1/2 activation via distinct receptor-specific mechanisms. J Cell Biochem 104:377–390. (PMID: 1802281610.1002/jcb.21633)
Tamiya S, Liu L, Kaplan HJ (2010) Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. Invest Ophthalmol Vis Sci 51:2755–2763. (PMID: 2004265610.1167/iovs.09-4725)
Pratt CH, Vadigepalli R, Chakravarthula P et al (2008) Transcriptional regulatory network analysis during epithelial-mesenchymal transformation of retinal pigment epithelium. Mol Vis 14:1414–1428. (PMID: 186828052493022)
Lee H, O’Meara SJ, O’Brien C et al (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299. (PMID: 1772421910.1167/iovs.07-0086)
Willis BC, DuBois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3:377–382. (PMID: 16738204265868910.1513/pats.200601-004TK)
Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153–2160. (PMID: 1782560010.1016/j.biocel.2007.07.01117825600)
Raghu K, Eric GN (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784. (PMID: 10.1172/JCI200320530)
Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82:175–181. (PMID: 1475260610.1007/s00109-003-0517-9)
Choi J, Park SY, Joo CK (2007) Transforming growth factor-beta 1 represses ecadherin production via slug expression in lens epithelial cells. Invest Ophthalmol Vis Sci 48:2708–2718. (PMID: 1752520310.1167/iovs.06-0639)
Beutel J, Luke M, Bartz-Schmidt KU et al (2009) Vitreal-induced RPE cell traction. Investigation of pathological vitreous samples in an in vitro contraction model. Ophthalmologe 106:893–898. (PMID: 1883060110.1007/s00347-008-1847-3)
Bringmann A, Wiedemann P (2009) Involvement of Muller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 247:865–883. (PMID: 1941531810.1007/s00417-009-1082-x)
Bringmann A, Pannicke T, Grosche J et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424. (PMID: 1683979710.1016/j.preteyeres.2006.05.003)
Charteris DG, Downie J, Aylward GW et al (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245:93–100. (PMID: 1661263510.1007/s00417-006-0323-5)
Fisher SK, Lewis GP (2003) Muller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43:887–897. (PMID: 1266805810.1016/S0042-6989(02)00680-6)
Baudouin C, Fredj-Reygrobellet D, Brignole F, Negre F, Lapalus P et al (1993) Growth factors in vitreous and subretinal fluid cells from patients with proliferative reoretinopathy. Ophthalmic Res 25:52–59. (PMID: 844636810.1159/000267221)
Kita T, Hata Y, Kano K et al (2007) Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 56:231–238. (PMID: 1719248710.2337/db06-0581)
Winkler J, Hoerauf H (2011) TGF-β and RPE-derived cells in subretinal strands from patients with proliferative vitreoretinopathy. Eur J Ophthalmol 21:422–426. (PMID: 2114037210.5301/EJO.2010.6067)
Lee H, O’Meara SJ, O’Brien C, Kane R (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299. (PMID: 1772421910.1167/iovs.07-0086)
Lee J, Ko M, Joo CK (2008) Rho plays a key role in TGF-beta 1‑induced cytoskeletal rearrangement in human retinal pigment epithelium. J Cell Physiol 216:520–526. (PMID: 1831488010.1002/jcp.21424)
Oshima Y, Sakamoto T, Hisatomi T et al (2002) Gene transfer of soluble TGF-beta type II receptor inhibits experimental proliferative vitreoretinopathy. Gene Ther 9:1214–1220. (PMID: 1221588810.1038/sj.gt.3301789)
Itoh Y, Kimoto K, Imaizumi M et al (2007) Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 84:464–472. (PMID: 1721794810.1016/j.exer.2006.10.017)
Kita T (2010) Molecular mechanisms of preretinal membrane contraction in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Nippon Ganka Gakkai Zasshi 114:927–934. (PMID: 21141072)
Nassar K, Grisanti S, Tura A et al (2014) A TGF‑β receptor 1 inhibitor for prevention of proliferative vitreoretinopathy. Exp Eye Res 123:72–78. (PMID: 2474249310.1016/j.exer.2014.04.006)
Nassar K, Lüke J, Lüke M et al (2010) The novel use of decorin in prevention of the development of proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 249:1649–1660. (PMID: 10.1007/s00417-011-1730-9)
Abdullatif AM, Macky TA, Abdullatif MM (2018) Intravitreal decorin preventing proliferative vitreoretinopathy in perforating injuries: a pilot study. Graefes Arch Clin Exp Ophthalmol 256:2473–2481. (PMID: 3012860510.1007/s00417-018-4105-7)
Lei H, Hovland P, Velez G et al (2007) A potential role for PDGF‑C in experimental and clinical proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:2335–2342. (PMID: 1746029910.1167/iovs.06-0965)
Cui JZ, Chiu A, Maberley D et al (2007) Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye 21:200–208. (PMID: 1653197610.1038/sj.eye.670216916531976)
Li R, Maminishkis A, Wang FE et al (2007) PDGF‑C and -D induced proliferation/migration of human RPE is abolished by inflammatory cytokines. Invest Ophthalmol Vis Sci 48:5722–5732. (PMID: 1805582510.1167/iovs.07-032718055825)
Moon SW, Chung EJ, Jung SA et al (2009) PDGF stimulation of Muller cell proliferation: contributions of c‑JNK and the PI3K/Akt pathway. Biochem Biophys Res Commun 388:167–171. (PMID: 1965399710.1016/j.bbrc.2009.07.14419653997)
Cui J, Lei H, Samad A et al (2009) PDGF receptors are activated in human epiretinal membranes. Exp Eye Res 88:438–444. (PMID: 1903295310.1016/j.exer.2008.10.02019032953)
Ikuno Y, Kazlauskas A (2002) An in vivo gene therapy approach for experimental proliferative vitreoretinopathy using the truncated platelet-derived growth factor alpha receptor. Invest Ophthalmol Vis Sci 43:2406–2411. (PMID: 1209144412091444)
Saishin Y, Takahashi K, Seo MS et al (2003) The kinase inhibitor PKC412 suppresses epiretinal membrane formation and retinal detachment in mice with proliferative retinopathies. Invest Ophthalmol Vis Sci 44:3656–3662. (PMID: 1288282010.1167/iovs.02-114312882820)
Kon CH, Occleston NL, Aylward GW et al (1999) Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 40:705–712. (PMID: 1006797410067974)
Hui Y, Shi Y, Zhang X et al (1999) TNF-alpha, IL‑8 and IL‑6 in the early inflammatory stage of experimental PVR model induced by macrophages. Zhonghua Yan Ke Za Zhi 35:140–143. (PMID: 1183579611835796)
Wang LH, Li GL (2008) Progress in studies on effects of extracellular matrix in occurrence of proliferative vitreoretinopathy. Zhonghua Yan Ke Za Zhi 44:759–763. (PMID: 1911564019115640)
Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363. (PMID: 1198876910.1038/nrm809)
Hollborn M, Reichenbach A, Wiedemann P et al (2004) Contrary effects of cytokines on mRNAs of cell cycle- and ECM-related proteins in hRPE cells in vitro. Curr Eye Res 28:215–223. (PMID: 1497752410.1076/ceyr.28.3.215.26250)
Hollborn M, Faude F, Wiedemann P et al (2003) Elevated proto-oncogene and collagen mRNA expression in PVR retinas. Graefes Arch Clin Exp Ophthalmol 241:439–446. (PMID: 1269825910.1007/s00417-003-0664-2)
Jerdan JA, Pepose JS, Michels RG et al (1989) Proliferativee vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology 96:801–810. (PMID: 266210210.1016/S0161-6420(89)32818-1)
George B, Chen S, Chaudhary V et al (2009) Extracellular matrix proteins in epiretinal membranes and in diabetic retinopathy. Curr Eye Res 34:134–144. (PMID: 1921968510.1080/02713680802585946)
Glaser BM, Cardin A, Biscoe B (1987) Proliferative vitreoretinopathy. The mechanism of development of vitreoretinal traction. Ophthalmology 94:327–332. (PMID: 358791210.1016/S0161-6420(87)33443-83587912)
Grisanti S, Wiedemann P, Weller M et al (1991) The significance of complement in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 32:2711–2717. (PMID: 1894471)
Yu J, Liu F, Cui SJ et al (2008) Vitreous proteomic analysis of proliferative vitreoretinopathy. Proteomics 8:3667–3678. (PMID: 1875220510.1002/pmic.20070082418752205)
Coral K, Angayarkanni N, Madhavan J et al (2008) Lysyl oxidase activity in the ocular tissues and the role of LOX in proliferative diabetic retinopathy and rhegmatogenous retinal detachment. Invest Ophthalmol Vis Sci 49:4746–4752. (PMID: 1856645910.1167/iovs.07-155018566459)
Symeonidis C, Papakonstantinou E, Souliou E et al (2011) Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol 89:339–345. (PMID: 1976491610.1111/j.1755-3768.2009.01701.x19764916)
Shitama T, Hayashi H, Noge S et al (2008) Proteome profiling of vitreoretinal diseases by cluster analysis. Proteomics Clin Appl 2:1265–1280. (PMID: 19081814260045710.1002/prca.200800017)
Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126:1172–1180. (PMID: 20885241422913110.1097/PRS.0b013e3181eae781)
Leung A, Crombleholme TM, Keswani SG (2012) Fetal wound healing: implications for minimal scar formation. Curr Opin Pediatr 24:371–378. (PMID: 22572760452818510.1097/MOP.0b013e3283535790)
Tsai HW, Wang PH, Tsui KH (2017) Mesenchymal stem cell in wound healing and regeneration. J Chin Med Assoc 17:30168–30165.
Horng HC, Chang WH, Yeh CC et al (2017) Estrogen effects on wound healing. Int J Mol Sci 18:E2325. (PMID: 2909981010.3390/ijms18112325)
Yannas IV, Tzeranis DS, So PTC (2017) Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen 25:177–191. (PMID: 28370669552081210.1111/wrr.12516)
Carre AL, Larson BJ, Knowles JA, Kawai K, Longaker MT, Lorenz HP (2012) Fetal mouse skin heals scarlessly in a chick chorioallantoic membrane model system. Ann Plast Surg 69:85. (PMID: 21712703422913710.1097/SAP.0b013e31822128a9)
Contributed Indexing:
Keywords: Cellular transdifferentiation; Scar; Tractional retinal detachment; Vitreoretinal wound healing; Wound healing process
Local Abstract: [Publisher, German] HINTERGRUND: Die proliferative Vitreoretinopathie (PVR) ist nach einem halben Jahrhundert Forschungstätigkeit weiterhin ein ungelöstes Problem. [Publisher, German] Es folgt ein Übersichtsbeitrag zu den Mechanismen der PVR im Kontext der „Wundheilungsforschung“. [Publisher, German] Wundheilung ist ein physiologischer Reparaturmechanismus, der in allen Organen in ähnlicher Weise stattfindet und narbige Veränderungen hinterlassen kann. Die PVR basiert auf diesem Mechanismus. Die Besonderheit dieses Prozesses und seiner Folgen ergibt sich durch die Lokalisation und die beteiligten Strukturen. Die bisherigen medikamentösen Ansätze waren nicht ausreichend wirksam. Das wachsende Verständnis um die Mechanismen der narbenfreien fetalen Wundheilung könnte aber zur Lösung des PVR-Problems führen. [Publisher, German] Die PVR ist ein physiologischer Prozess mit pathologischem Ergebnis. Die komplexen Schritte, die sukzessive ihren Beitrag zum Wundheilungsprozess leisten, sind gut verstanden. Eine Modifikation dieser Schritte, um den ursprünglichen Zustand wieder herzustellen, ist gegenwärtig weder in der Augenheilkunde noch in anderen medizinischen Fächern gelungen, aber möglich.
Entry Date(s):
Date Created: 20201216 Date Completed: 20210118 Latest Revision: 20220419
Update Code:
20240104
DOI:
10.1007/s00347-020-01294-0
PMID:
33326054
Czasopismo naukowe
Background: Proliferative vitreoretinopathy (PVR) is still an unsolved problem after half a century of research.
Methods: This article provides a review of mechanisms leading to PVR in the context of wound healing research.
Results: Wound healing is a physiological repair process that occurs in a similar way in all organs and may end in scar formation. The development of PVR is based on this wound healing mechanism. The localization and structures involved lead to specific characteristics and consequences. Up to now the pharmacotherapeutic strategies were not sufficiently effective. The growing understanding of the mechanisms of scar-free fetal wound healing, could however lead to a solution of the PVR problem.
Conclusion: The PVR is a physiological process with a pathological result. The complex steps involved in vitreoretinal wound healing are well understood. There is currently no therapeutic approach neither in ophthalmology nor in other medical disciplines that is able to restore the original function and structure of the involved tissue or organ but there is hope that this can succeed in the future.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies