Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Balancing glucose and oxygen uptake rates to enable high amorpha-4,11-diene production in Escherichia coli via the methylerythritol phosphate pathway.

Tytuł:
Balancing glucose and oxygen uptake rates to enable high amorpha-4,11-diene production in Escherichia coli via the methylerythritol phosphate pathway.
Autorzy:
Patil V; Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.; Manus Bio, Cambridge, Massachusetts, USA.
Santos CNS; Manus Bio, Cambridge, Massachusetts, USA.
Ajikumar PK; Manus Bio, Cambridge, Massachusetts, USA.
Sarria S; Manus Bio, Cambridge, Massachusetts, USA.
Takors R; Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.
Źródło:
Biotechnology and bioengineering [Biotechnol Bioeng] 2021 Mar; Vol. 118 (3), pp. 1317-1329. Date of Electronic Publication: 2021 Jan 15.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
MeSH Terms:
Oxygen Consumption*
Antimalarials/*metabolism
Erythritol/*analogs & derivatives
Escherichia coli/*metabolism
Glucose/*metabolism
Oxygen/*metabolism
Polycyclic Sesquiterpenes/*metabolism
Sugar Phosphates/*metabolism
Erythritol/metabolism ; Escherichia coli/genetics
References:
Bloland, P. (2001). Drug resistance in malaria. Geneva: World Health Organization.
Chapman, A. G., Fall, L., & Atkinson, D. E. (1971). Adenylate energy charge in Escherichia coli during growth and starvation. Journal of Bacteriology, 108(3), 1072-1086. https://doi.org/10.1093/jmammal/gyv190.
Cortay, J. C., Bleicher, F., Duclos, B., Cenatiempo, Y., Gautier, C., Prato, J. L., & Cozzone, A. J. (1989). Utilization of acetate in Escherichia coli: Structural organization and differential expression of the ace operon. Biochimie, 71(9-10), 1043-1049.
Dumont, E., & Delmas, H. (2003). Mass transfer enhancement of gas absorption in oil-in-water systems: A review. Chemical Engineering and Processing: Process Intensification, 42(6), 419-438. https://doi.org/10.1016/S0255-2701(02)00067-3.
Eiteman, M., & Altman, E. (2006). Overcoming acetate in Escherichia coli recombinant protein fermentation. Trends in Biotechnology, 24, 530-536. https://doi.org/10.1016/j.tibtech.2006.09.001.
Han, K., Lim, H. C., & Hong, J. (1992). Acetic acid formation in Escherichia coli fermentation. Biotechnology and Bioengineering, 39(6), 663-671. https://doi.org/10.1002/bit.260390611.
Imlay, J. (2013). The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nature Reviews Microbiology, 11, 443-454. https://doi.org/10.1038/nrmicro3032.
Kirby, J., & Keasling, J. D. (2009). Biosynthesis of plant isoprenoids: Perspectives for microbial engineering. Annual Review of Plant Biology, 60(1), 335-355. https://doi.org/10.1146/annurev.arplant.043008.091955.
Kumaran, A. P., Lim, R., Donald, J., Tseng, H., Santos, C., & Philippe, R. Metabolic engineering for microbial production of terpenoid products. US Patent No. 10480015 B2, November 19, 2019.
Kung, S. H., Lund, S., Murarka, A., McPhee, D., & Paddon, C. J. (2018). Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Frontiers in Plant Science, 9, 1-7. https://doi.org/10.3389/fpls.2018.00087.
Löffler, M., Simen, J. D., Jäger, G., Schäferhoff, K., Freund, A., & Takors, R. (2016). Engineering E. coli for large-scale production-Strategies considering ATP expenses and transcriptional responses. Metabolic Engineering, 38, 73-85. https://doi.org/10.1016/j.ymben.2016.06.008.
Luli, G. W., & Strohl, W. R. (1990). Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Applied and Environmental Microbiology, 56(4), 1004-1011. https://doi.org/10.1128/aem.56.4.1004-1011.1990).
Lyubetskaya, A. V., Rubanov, L. I., & Gelfand, M. S. (2006). Use of the flux model of amino acid metabolism of Escherichia coli. Biochemistry (moscow), 71(11), 1256-1260.
Olumese, P. (2006). Guidelines for the treatment of malaria. Geneva: World Health Organization.
Partridge, J. D., Sanguinetti, G., Dibden, D. P., Roberts, R. E., Poole, R. K., & Green, J. (2007). Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. Journal of Biological Chemistry, 282(15), 11230-11237. https://doi.org/10.1074/jbc.M700728200.
Peplow, M. (2016). Synthetic biology's first malaria drug meets market resistance. Nature News, 530, 389-390. https://www.nature.com/news/synthetic-biology-s-first-malaria-drug-meets-market-resistance-1.19426.
Reed, J. L., Vo, T. D., Schilling, C. H., & Palsson, B. O. (2003). An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology, 4(9), R54.
Spaans, S. K., Weusthuis, R. A., van der Oost, J., & Kengen, S. W. M. (2015). NADPH-generating systems in bacteria and archaea. Frontiers in Microbiology, 6(JUL), 1-27. https://doi.org/10.3389/fmicb.2015.00742.
Tsuruta, H., Paddon, C. J., Eng, D., Lenihan, J. R., Horning, T., Anthony, L. C., Regentin, R., Keasling, J. D., Renninger, N. S., & Newman, J. D. (2009). High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLOS One, 4(2), e4489. https://doi.org/10.1371/journal.pone.0004489.
University Of California, Berkeley. (2004, December 30). $43 million grant from Gates Foundation brings together unique collaboration for antimalarial drug. ScienceDaily. Retrieved September 3, 2020 from www.sciencedaily.com/releases/2004/12/041219151820.htm.
Westfall, P. J., Pitera, D. J., Lenihan, J. R., Eng, D., Woolard, F. X., Regentin, R., Horning, T., Tsuruta, H., Melis, D. J., Owens, A., Fickes, S., Diola, D., Benjamin, K. R., Keasling, J. D., Leavell, M. D., McPhee, D. J., Renninger, N. S., Newman, J. D., & Paddon, C. J. (2012). Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences of the United States of America, 109(3), E111-E118. https://doi.org/10.1073/pnas.111074010.
World Malaria Report (2019). Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.
Yadav, V. G., De Mey, M., Giaw Lim, C., Kumaran Ajikumar, P., & Stephanopoulos, G. (2012). The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metabolic Engineering, 14(3), 233-241. https://doi.org/10.1016/j.ymben.2012.02.001.
Yang, C., Gao, X., Jiang, Y., Sun, B., Gao, F., & Yang, S. (2016). Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metabolic Engineering, 37, 79-91. https://doi.org/10.1016/j.ymben.2016.05.003.
Zhou, K., Zou, R., Stephanopoulos, G., & Too, H. P. (2012). Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production. PLOS One, 7(11), e47513.
Contributed Indexing:
Keywords: FBA; MEP pathway; NADPH; amorpha-4,11-diene; oxygen uptake; terpenoid
Substance Nomenclature:
0 (2-C-methylerythritol 4-phosphate)
0 (Antimalarials)
0 (Polycyclic Sesquiterpenes)
0 (Sugar Phosphates)
0 (amorpha-4,11-diene)
IY9XDZ35W2 (Glucose)
RA96B954X6 (Erythritol)
S88TT14065 (Oxygen)
Entry Date(s):
Date Created: 20201217 Date Completed: 20220117 Latest Revision: 20220117
Update Code:
20240105
DOI:
10.1002/bit.27655
PMID:
33331668
Czasopismo naukowe
Amorpha-4,11-diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient biosynthetic routes for its production. Here, we describe the optimization of key process conditions for an Escherichia coli strain producing AMD4,11 via the native methylerythritol phosphate (MEP) pathway. By studying the interplay between glucose uptake rates and oxygen demand, we were able to identify optimal conditions for increasing carbon flux through the MEP pathway by manipulating the availability of NADPH required for terpenoid production. Installation of an optimal q O2 /q glucose led to a 6.7-fold increase in product titers and a 6.5-fold increase in carbon yield.
(© 2020 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies