Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bioactivity of Bacillus thuringiensis (Bacillales: Bacillaceae) on Diatraea saccharalis (Lepidoptera: Crambidae) eggs.

Tytuł:
Bioactivity of Bacillus thuringiensis (Bacillales: Bacillaceae) on Diatraea saccharalis (Lepidoptera: Crambidae) eggs.
Autorzy:
Daquila BV; Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil.
Dossi FC; Institute of Technology and Research - ITP, Aracaju, Brazil.
Moi DA; Department of Biological Sciences, State University of Maringá - UEM, Maringá, Brazil.
Moreira DR; Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil.
Caleffe RR; Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil.
Pamphile JA; Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil.
Conte H; Department of Biotechnology, Genetics and Cell Biology, State University of Maringá - UEM, Maringá, Brazil.
Źródło:
Pest management science [Pest Manag Sci] 2021 Apr; Vol. 77 (4), pp. 2019-2028. Date of Electronic Publication: 2021 Jan 11.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
MeSH Terms:
Bacillaceae*
Bacillales*
Bacillus thuringiensis*
Lepidoptera*
Moths*
Animals ; Bacillus thuringiensis Toxins ; Bacterial Proteins ; Endotoxins ; Hemolysin Proteins ; Larva ; Pest Control, Biological
References:
Nascimento L and Melnyk A, A química dos pesticidas no meio ambiente e na saúde. Rev Mangaio Acad 1:54-61 (2016).
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P and Hens L, Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148 (2016).
Sparks TC and Nauen R, IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122-128 (2015).
Blanco C, Chiaravalle W, Dalla-Rizza M, Farias J, García-Degano M, Gastaminza G et al., Current situation of pests targeted by Bt crops in Latin America. Curr Opin Insect Sci 15:131-138 (2016).
Fu B, Qiu H, Li Q, Tang L, Zeng D, Liu K et al., Analysis of seasonal and annual field-evolved insecticide resistance in populations of Thrips hawaiiensis in banana orchards. J Pestic Sci 92:1293-1307 (2019).
Vanaclocha P, Jones MM, Tansey JA, Monzó C, Chen X and Stansly PPA, Residual toxicity of insecticides used against the Asian citrus psyllid and resistance management strategies with thiamethoxam and abamectin. J Pestic Sci 92:871-883 (2019).
Horowitz AR, Ghanim M, Roditakis E, Nauen R and Ishaaya I, Insecticide resistance and its management in Bemisia tabaci species. J Pestic Sci 93:893-910x (2020). https://doi.org/10.1007/s10340-020-01210-0.
Rabelo MM, Paula-Moraes SV, Pereira EJG and Siegfried BD, Contrasting susceptibility of lepidopteran pests to diamide and pyrethroid insecticides in a region of overwintering and migratory intersection. Pest Manag Sci 76:5984 (2020).
Galzer ECW and Azevedo-Filho WS, Utilização do Bacillus thuringiensis no controle biológico de pragas. Rev Interdisc Ciênc Aplic 1:1-4 (2016).
Lowe EC, Latty T, Webb CE, Whitehouse MEA and Saunders ME, Engaging urban stakeholders in the sustainable management of arthropod pests. J Pestic Sci 92:987-1002 (2019).
Nawaz A, Sufyan M, Gogi MD and Javed MW, Sustainable management of insect-pests, in Innovations in Sustainable Agriculture, Farooq M and Pisante M. Springer, Cham, pp. 287-335 (2019). DOI: https://doi.org/10.1007/978-3-030-23169-9_10.
Capalbo DMF, Vilas-Boâs GT, Arantes OMN and Suzuki MT, Bacillus thuringiensis. Biotechnol Ciênc Desenv 34:76-83 (2005).
Valicente FH, Lana UGP, Pereira ACP, Martins JLA and Tavares ANG, Riscos à produção de biopesticida à base de Bacillus thuringiensis. Embrapa, Sete Lagoas 239:1-20 (2018).
Jurat-Fuentes JL and Jackson TA, Bacterial entomopathogens, in Insect Pathology, ed. by Vega FE and Kaya HK. Academic Press, Cambridge, pp. 265-349 (2012).
Bolkedi B, Sellami S, Ktari S, Hassan NB, Sellami-Boudawari T, Tounsi S et al., Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against lepidopteran pests. Microbiol Res 186-187:9-15 (2016).
Ferreira CAS, Santana MV, Santos JB, Santos TTM, Lôbo LM and Fernandes PM, Yield and technological quality of sugarcane cultivars under infestation of Diatraea saccharalis (Fabr., 1794). Arq Inst Biol 85:1-7 (2018).
Bulla LA, Bechtel DB, Kramer KJ, Shethna YI, Aronson AI and Fitz-James PC, Ultrastructure, physiology, and biochemistry of Bacillus thuringiensis. Crit Rev Microbiol 8:147-204 (1980).
Maagd RA, Bosch D and Stiekema W, Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci 4:9-13 (1999).
Praça LB, Batista AC, Martins ÉS, Siqueira CB, Dias DGS, Gomes ACMM et al., Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera. Pesqui Agropecu Bras 39:11-16 (2012).
Hernández-Fernández J, Bacillus thuringiensis: a natural tool in insect pest control, in The Handbook of Microbial Bioresources, ed. by Gupta VK, Tuohy MG and Gaur R. CABI, Wallingford, UK, pp. 121-139 (2016).
Horta AB, Panutti LER, Baldin ELL and Furtado EL, Toxinas inseticidas de Bacillus thuringiensis, in Biotecnologia Aplicada à Agro & Indústria, ed. by Blucher RRR, São Paulo, 4:737-774 (2017). https://doi.org/10.5151/9788521211150-21.
Shu-Sheng L and Guang-Mei Z, Effects of Bacillus thuringiensis on eggs of three lepidopterous pests of crucifer vegetable crops. A Sivapragasam, WH Loke, AK Hussan, GS Lim, The management of diamondback moth and other crucifer pests: Kuala Lumpur, Malaysia: Malaysian Agricultural Research and Development Institute (Mardi); 3:109-112 (1997). https://worldveg.tind.io/record/73662.
Daquila BV, Scudeler EL, Dossi FCA, Moreira DR, Pamphile JA and Conte H, Action of Bacillus thuringiensis (Bacillales: Bacillaceae) in the midgut of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Ecotoxicol Environ Saf 184:109642 (2019).
Who - World Health Organization, Guideline Specifications for Bacterial Larvicides for Public Health Use. WHO, Geneva, pp. 1-44 (1999).
Araújo JR, Guia prático para a criação da broca da cana-de-açúcar e de seus parasitóides em laboratório. IAA/Planalsucar, Piracicaba, pp. 1-36 (1987).
Junqueira LCU and Junqueira LMMS, Técnicas básicas de citologia e histologia. Editora Santos, São Paulo, pp. 1-123 (1983).
IBM Corporation, IBM SPSS Statistics for Windows. IBM, Armonk, NY 25.0 (2017).
Abbott WS, A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265-266 (1925).
Nogueira MD and Habib MEM, Biologia e controle microbiano de Urbanus acawoios (Williams, 1926) (Lepidoptera: Hesperiidae): Patologia e susceptibilidade em larvas infectadas por Bacillus thuringiensis var. Kurstaki (H-3a:3b). Acta Amazon 31:655-659 (2001).
Legwaila MM, Munthali DC, Kwerwpe BC and Obopile M, Efficacy of Bacillus thuringiensis (var. kurstaki) against diamondback moth (Plutella xylostella L.) eggs and larvae on cabbage under semi-controlled greenhouse conditions. Internat. J Insect Sci 7:39-45 (2015).
Basyony AG and Abo-Zaid GA, Biocontrol of the root-knot nematode, Meloidigyne incognuta, using a eco-friendly formulation from Bacillus thuringiensis, lab and greenhouse studies. Egypt J Biol Pest Control 28:87 (2018). https://doi.org/10.1186/s41938-018-0094-4.
Meadows J, Gill SS and Bone LW, Factors influencing lethality of Bacillus thuringiensis Kurstaki toxin for eggs and larvae of Trichostrongylus colubriformis (Nematoda). J Parasitol 75:191-194 (1989).
Bell JV, Serratia marcescens found in eggs of Heliothis zea: tests against Trichoplusia ni. J Invert Pathol 13:151-152 (1969).
Lynch RE, Lewis LC and Brindley TA, Bacteria associated with eggs and first-instar larvae of the European corn borer: identification and frequency of occurrence. J Invert Pathol 27:229-237 (1976).
Sikorowski PP, Lawrence AM and Inglis GD, Effects of Serratia marcescens on rearing of the tobacco budworm (Lepidoptera: Noctuidae). Am Entomol 47:51-60 (2001).
Salama HS, Control of Spodoptera littoralis through moth and eggs treatment with Bacillus thuringiensis. Int J Trop Insect Sci 6:49-53 (1985).
Tabashnik BE, Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47-79 (1994).
Heckel DG, Gahan LJ, Liu Y and Tabashnik BE, Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. Proc Natl Acad Sci U S A 96:8373-8377 (1999).
Rodriguéz L, Morán I, Ayra C, Téllez P, Hernández D, Rodriguéz C et al., Identificación funcional de tres nuevos genes involucrados en la resistencia a Bacillus thuringiensis en Plutella xylostella. Biotecnol Appl 33:3501-3503 (2016).
Baragamaarachchi RY, Samarasekera YKRR, Weerasena OVDSJ, Lamour K and Jurat-Fuentes JL, Identification of a native Bacillus thuringiensis strain from Sri Lanka activeagainst Dipel-resistant Plutella xylostella. PeerJ 7:e7535 (2019).
Xiao Y and Wu K, Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos Trans R Soc B 374:20180316 (2019).
Mahesha HS, Ravichandra NG, Rao MS, Narasegowda NC, Sonyal S and Hotkar S, Bio-efficacy of different strains of Bacillus spp. against Meloidogyne incognitaunder in vitro. Int J Curr Microbiol App Sci 6:2511-2517 (2017).
Bottjer KP, Bone LW and Gill SS, Nematoda: susceptibility of the egg to Bacillus thuringiensis toxins. Exp Parasitol 60:239-244 (1985).
Campbell BE and Miller DM, Insecticide resistance in eggs and first instars of the bed bug, Cimex lectularius (Hemiptera: Cimicidae). Insects 6:122-132 (2015).
Enslee EC and Riddifold LM, Morphological effects of JKM on embryonic development in the bug Pyrrhocoris apteru Wilhelm Roux's. Arch Dev Biol 181:163-181 (1977).
Blum MS and Hilker M, Chemical protection of insect eggs, in Chemoecology of Insect Eggs and Egg Deposition, ed. by Hilker M. Wiley, Hoboken, NJ, pp. 61-90 (2008).
Beament KWL, The penetration of insect egg-shells; the properties and permeability of sub-chorial membranes during development of Rhodnius prolixus, Stal. Bull Entomol Res 39:467-488 (1949).
Tabashnik BE, Zhang M, Fabrick JA, Wu Y, Gao M, Huang F et al., Dual mode of action of Bt proteins: protoxin efficacy against resistant insects. Sci Rep 5:15107 (2015).
Martínez-Zavala AS, Barboza-Pérez EU, Hérnandez-Guszmán G, Bideshi DK and Barboza-Corona JE, Chitinases of Bacillus thuringiensis: phylogeny, modular structure, and applied potentials. Front Microbiol 10:3032 (2020).
Schnepf E, Crickmore N, Van-Rie J, Lereclus D, Baum J, Feitelson J et al., Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775-806 (1998).
Li N, Wang J, Han H, Huang L, Shao F and Li X, Intravital imaging of Bacillus thuringiensis Cry1A toxin binding sitesin the midgut of silkworm. Anal Biochem 447:90-97 (2014).
Lamer A and Dorn A, The serosa of Manduca sexta (Insecta, Lepidoptera): ontogeny, secretory activity, structural charges, and functional considerations. Tissue Cell 33:583-595 (2001).
Jacobs CGC, Spaink HP and Van-der-Zee M, The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. Elife 3:e04111 (2014).
Fousto AM, Gambellini G, Mazzini M and Cecchettini A, Serosa membrane plays a key role in transferring vitellin polypeptides to the perivitelline fluid in insect embryos. Dev Growth Differ 43:725-733 (2001).
Ikeda M, Yaginuma T, Kobayashi M and Yamashita O, cDNA cloning, sequencing and temporal expression of the protease responsible for vitellin degradation in the silkworm Bombyx mori. Comp Biochem Physiol 99:405-411 (1991).
Maki N and Yamashita O, The 30k protease a responsible for 30-kDa yolk protein degradation of the silkworm, Bombyx mori: cDNA structure, developmental change and regulation by feeding. Insect Biochem Mol Biol 31:407-413 (2001).
Schmidt-Ott U and Wai-Kwan C, Morphogenetic functions of extraembryonic membranes in insects. Curr Opin Insect Sci 13:86-92 (2016).
Dossi FCA, Conte H and Zacaro AA, Histochemical characterization of the embryonic stages in Diatraea saccharalis (Lepidoptera: Crambidae). Entomol Soc Am 99:1206-1212 (2006).
Telfer WH, Egg formation in Lepidoptera. J Insect Sci 9:1-21 (2009).
Klowden MJ, Physiological Systems in Insects. Elsevier, London, pp. 149-181 (2013).
Osterfield M, Du X, Schüpbach T, Wieschaus E and Shvartsman SW, Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 24:400-410 (2013).
Hoffmann JA, The immune response of Drosophila. Nature 426:33-38 (2003).
Wang Y and Jiang H, Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor. Insect Biochem Mol Biol 37:1015-1025 (2007).
Dubovsky IM, Krukova NA and Glupov VV, Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. J Invertebr Pathol 98:360-362 (2008).
Nakhleh J, El-Moussawi L and Osta MA, The melanization response in insect immunity. Adv Insect Physiol 52:83-109 (2016).
Morisato D and Anderson K, Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29:371-399 (1995).
LeMosy EK, Hong CC and Hashimoto C, Signal transduction by a protease cascade. Trends Cell Biol 9:102-107 (1999).
Moussian B and Roth S, Dorsoventral axis formation in the Drosophila embryo-shaping and transducing a morphogen gradient. Curr Biol 15:887-899 (2005).
Kanost MR and Clem RJ, Insect proteases, in Insect Molecular Biology and Biochemistry, ed. by Lawrence IG. Elsevier, London, pp. 1-16 (2012).
Dumstrei K, Wang F, Shy D, Tepass U and Hartenstein V, Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Development 129:3983-3994 (2002).
Güereca L and Bravo A, The oligomeric state of Bacillus thuringiensis cry toxins in solution. Biochim Biophys Acta 1429:342-350 (1999).
Vié V, Van-Mau N, Pomaréde P, Dance C, Schwartz JL, Laprade R et al., Lipid-induced pore formation of the Bacillus thuringiensis Cry1Aa insecticidal toxin. J Membr Biol 180:195-203 (2001).
Walters FS, Kulesza CA, Phillips AT and English LH, A stable oligomer of Bacillus thuringiensis delta-endotoxin, CryIIIA. Insect Biochem Mol Biol 24:963-968 (1994).
Halbleib JM and Nelson WJ, Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Gene Dev 20:3199-3214 (2006).
Duguay D, Foty RA and Steinberg MS, Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol 253:309-323 (2003).
Foty RA and Steinberg MS, The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255-263 (2005).
Takeichi M, Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451-1455 (1988).
Oda H, Tsukita S and Takeichi M, Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev Biol 203:435-450 (1998).
Pardo-López L, Soberón M and Bravo A, Bacillus thuringiensis insecticidal three-domain cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3-22 (2012).
Batool K, Alam I, Jin L, Xu J, Wu C, Wang J et al., CTLGA9 interacts with ALP1 and APN receptors to modulate Cry11Aa toxicity in Aedes aegypti. J Agric Food Chem 67:8896-8904 (2019).
Zhang X, Candas M, Griko NB, Rose-Young L and Bulla LA, Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ 12:1407-1416 (2005).
Zhang X, Candas M, Griko NB, Taussig R and Bulla-Junior LA, A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103:9897-9902 (2006).
Peyronnet O, Vachon V, Brousseau I, Baines D, Schwartz JL and Laprade A, Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells. Appl Environ Microbiol 63:1679-1684 (1997).
Rausell C, Decker N, Garcia-Robles I, Escriche B, Van-Kerkhove E, Real MD et al., Effect of Bacillus thuringiensis toxins on the midgut of the nun moth Lymantria monacha. J Invertebr Pathol 75:288-291 (2000).
Zhou H, Hu W, Huang Q, Abouzaid M, Jin H, Sun Y et al., Knockdown of cadherin genes decreases susceptibility of Chilo suppressalis larvae to cry toxins. Insect Mol Biol 29:301-308 (2020).
Manjo G and Joris I, Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146:3-15 (1995).
Scudeler EL, Garcia ASG, Padovani CR, Pinheiro PFF and Santos DC, Cytotoxic effects of neem oil of the predator Ceraeochrysa claveri. Micron 80:96-111 (2016).
Aranda E, Sanches J, Peferoen M, Güereca L and Bravo A, Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 68:203-212 (1996).
Castro BMC, Martinez LC, Barbosa SG, Serrão JE, Wilcken CF, Soares MA et al., Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Sci Rep 9:6667 (2019).
Grant Information:
National Council for Scientific and Technological Development (CNPq); Coordination of Improvement of Higher Education Personnel (CAPES)
Contributed Indexing:
Keywords: biological control; endotoxins; integrated pest management; sugarcane borer; sustainability; ultrastructure
Substance Nomenclature:
0 (Bacillus thuringiensis Toxins)
0 (Bacterial Proteins)
0 (Endotoxins)
0 (Hemolysin Proteins)
Entry Date(s):
Date Created: 20201220 Date Completed: 20210317 Latest Revision: 20210317
Update Code:
20240105
DOI:
10.1002/ps.6230
PMID:
33342024
Czasopismo naukowe
Background: Bacillus thuringiensis (Bt) is a Gram-positive bacterium that synthesizes specific protein toxins, which can be exploited for control of various insect pests, including Diatraea saccharalis, a lepidopteran that severely damages sugarcane crops. Although studies have described the effects of Bt in the larval phases of D. saccharalis, few have examined its effect on insect eggs. Herein, we studied the entomopathogenic potential of Bacillus thuringiensis serovar Aizawai GC-91 (Bta) during D. saccharalis embryo development with the aim of understanding the entomopathogenic mechanism and developing new biological control techniques for target insects.
Results: Bta concentrations of 5, 10 and 20 g L -1 demonstrated the strongest bioactivity, reducing D. saccharalis egg viability by 28.69%, 33.91% and 34.98%, respectively. The lethal concentrations (LCs) were estimated as: LC 50 = 28.07 g L -1 (CI 95% = 1.89-2.38) and LC 90 = 65.36 g L -1 (CI 95% = 4.19-5.26). Alterations in egg coloration, melanization and granule accumulation were observed at 24 h, persisting until 144 h. The embryo digestive systems were severely damaged, including narrowing of the intestinal lumen, vesiculations and degenerated cells, causing embryonic death.
Conclusion: The toxicity caused by Bta in D. saccharalis embryos demonstrated its potential as a biological control agent and as a sustainable alternative for integrated management of D. saccharalis infestation. © 2020 Society of Chemical Industry.
(© 2020 Society of Chemical Industry.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies