Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Neutrophils and Visceral Leishmaniasis: Impact on innate immune response and cross-talks with macrophages and dendritic cells.

Tytuł:
Neutrophils and Visceral Leishmaniasis: Impact on innate immune response and cross-talks with macrophages and dendritic cells.
Autorzy:
Kupani M; Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
Pandey RK; Research & Development, Thermo Fisher Scientific, Bengaluru, Karnataka, India.
Mehrotra S; Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
Źródło:
Journal of cellular physiology [J Cell Physiol] 2021 Apr; Vol. 236 (4), pp. 2255-2267. Date of Electronic Publication: 2020 Dec 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Review
Język:
English
Imprint Name(s):
Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
MeSH Terms:
Immunity, Innate*
Dendritic Cells/*immunology
Leishmania donovani/*immunology
Leishmaniasis, Visceral/*immunology
Macrophages/*immunology
Neutrophils/*immunology
Animals ; Cell Communication ; Dendritic Cells/metabolism ; Dendritic Cells/parasitology ; Host-Pathogen Interactions ; Humans ; Insect Vectors ; Leishmania donovani/pathogenicity ; Leishmaniasis, Visceral/metabolism ; Leishmaniasis, Visceral/parasitology ; Leishmaniasis, Visceral/transmission ; Macrophages/metabolism ; Macrophages/parasitology ; Neutrophil Infiltration ; Neutrophils/metabolism ; Neutrophils/parasitology ; Psychodidae/parasitology
References:
Abdeladhim, M., Kamhawi, S., & Valenzuela, J. G. (2014). What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infection, Genetics and Evolution, 28, 691-703. https://doi.org/10.1016/j.meegid.2014.07.028.
Afonso, L., Borges, V. M., Cruz, H., Ribeiro-Gomes, F. L., DosReis, G. A., Dutra, A. N., & Brodskyn, C. I. (2008). Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis. Journal of Leukocyte Biology, 84(2), 389-396. https://doi.org/10.1189/jlb.0108018.
Aga, E., Katschinski, D. M., van Zandbergen, G., Laufs, H., Hansen, B., Müller, K., & Laskay, T. (2002). Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. Journal of Immunology, 169(2), 898-905. https://doi.org/10.4049/jimmunol.169.2.898.
Andrade, Z. A., Reed, S. G., Roters, S. B., & Sadigursky, M. (1984). Immunopathology of experimental cutaneous leishmaniasis. The American Journal of Pathology, 114(1), 137-148.
Arango Duque, G., & Descoteaux, A. (2015). Leishmania survival in the macrophage: Where the ends justify the means. Current Opinion in Microbiology, 26, 32-40. https://doi.org/10.1016/j.mib.2015.04.007.
Araújo-Santos, T., Prates, D. B., França-Costa, J., Luz, N. F., Andrade, B. B., Miranda, J. C., & Borges, V. M. (2014). Prostaglandin E2/Leukotriene B4 balance induced by Lutzomyia longipalpis saliva favors Leishmania infantum infection. Parasites & Vectors, 7(1), 601. https://doi.org/10.1186/s13071-014-0601-8.
Babiker, D. T., Bakhiet, S. M., & Mukhtar, M. M. (2015). Leishmania donovani influenced cytokines and Toll-like receptors expression among Sudanese visceral leishmaniasis patients. Parasite Immunology, 37(8), 417-425. https://doi.org/10.1111/pim.12202.
Becker, I., Salaiza, N., Aguirre, M., Delgado, J., Carrillo-Carrasco, N., Kobeh, L. G., & Isibasi, A. (2003). Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Molecular and Biochemical Parasitology, 130(2), 65-74. https://doi.org/10.1016/S0166-6851(03)00160-9.
Bomfim, L. G. S., Magalhães, L. S., Santos-Filho, M. A. A., Peres, N. T. A., Corrêa, C. B., Tanajura, D. M., & de Moura, T. R. (2017). Leishmania infantum induces the release of sTREM-1 in visceral leishmaniasis. Frontiers in Microbiology, 8, 2265. https://doi.org/10.3389/fmicb.2017.02265.
Brandonisio, O., Panunzio, M., Faliero, S. M., Ceci, L., Fasanella, A., & Puccini, V. (1996). Evaluation of polymorphonuclear cell and monocyte functions in Leishmania infantum-infected dogs. Veterinary Immunology and Immunopathology, 53(1-2), 95-103. https://doi.org/10.1016/0165-2427(96)05562-6.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532-1535. https://doi.org/10.1126/science.1092385.
Carregaro, V., Costa, D. L., Brodskyn, C., Barral, A. M., Barral-Netto, M., Cunha, F. Q., & Silva, J. S. (2013). Dual effect of Lutzomyia longipalpis saliva on Leishmania braziliensis infection is mediated by distinct saliva-induced cellular recruitment into BALB/c mice ear. BMC Microbiology, 13(1), 102. https://doi.org/10.1186/1471-2180-13-102.
Cezário, G. A. G., Oliveira, L. R. C., de, Peresi, E., Nicolete, V. C., Polettini, J., Lima, C. R. G. de, & Calvi, S. A. (2011). Analysis of the expression of toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection. Memórias Do Instituto Oswaldo Cruz, 106(5), 573-583. https://doi.org/10.1590/S0074-02762011000500010.
Chagas, A. C., Oliveira, F., Debrabant, A., Valenzuela, J. G., Ribeiro, J. M. C., & Calvo, E. (2014). Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathogens, 10(2), e1003923. https://doi.org/10.1371/journal.ppat.1003923.
Charmoy, M., Brunner-Agten, S., Aebischer, D., Auderset, F., Launois, P., Milon, G., & Tacchini-Cottier, F. (2010). Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathogens, 6(2), e1000755. https://doi.org/10.1371/journal.ppat.1000755.
Costa, D. J., Favali, C., Clarêncio, J., Afonso, L., Conceição, V., Miranda, J. C., & Brodskyn, C. I. (2004). Lutzomyia longipalpis salivary gland homogenate impairs cytokine production and costimulatory molecule expression on human monocytes and dendritic cells. Infection and Immunity, 72(3), 1298-1305. https://doi.org/10.1128/IAI.72.3.1298-1305.2004.
Culley, F. J., Harris, R. A., Kaye, P. M., McAdam, K. P., & Raynes, J. G. (1996). C-reactive protein binds to a novel ligand on Leishmania donovani and increases uptake into human macrophages. The Journal of Immunology, 156(12), 4691-4696.
Deane, L., & Guimarães, F. N. (1938). Aspectos interessantes de phagocytose observados na leishmaniose visceral e na malária. Memórias do Instituto Oswaldo Cruz, 33(2), 263-279.
Dey, R., Joshi, A. B., Oliveira, F., Pereira, L., Guimarães-Costa, A. B., Serafim, T. D., & Kamhawi, S. (2018). Gut microbes egested during bites of infected sand flies augment severity of leishmaniasis via inflammasome-derived IL-1β. Cell Host & Microbe, 23(1), 134-143. https://doi.org/10.1016/j.chom.2017.12.002.
Fadok, V. A., Savill, J. S., Haslett, C., Bratton, D. L., Doherty, D. E., Campbell, P. A., & Henson, P. M. (1992). Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. The Journal of Immunology, 149(12), 4029-4035.
Faria, M. S., Reis, F. C. G., & Lima, A. P. C. A. (2012). Toll-like receptors in Leishmania infections: Guardians or promoters? Journal of Parasitology Research, 2012, 930257. https://doi.org/10.1155/2012/930257.
Flandin, J.-F., Chano, F., & Descoteaux, A. (2006). RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-γ-primed macrophages. European Journal of Immunology, 36(2), 411-420. https://doi.org/10.1002/eji.200535079.
Fonseca, S. G., Romão, P. R. T., Figueiredo, F., Morais, R. H., Lima, H. C., Ferreira, S. H., & Cunha, F. Q. (2003). TNF-alpha mediates the induction of nitric oxide synthase in macrophages but not in neutrophils in experimental cutaneous leishmaniasis. European Journal of Immunology, 33(8), 2297-2306. https://doi.org/10.1002/eji.200320335.
Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., & Zychlinsky, A. (2007). Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology, 176(2), 231-241. https://doi.org/10.1083/jcb.200606027.
Gabriel, C., McMaster, W. R., Girard, D., & Descoteaux, A. (2010). Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. The Journal of Immunology, 185(7), 4319-4327. https://doi.org/10.4049/jimmunol.1000893.
Gallego, C., Golenbock, D., Gomez, M. A., & Saravia, N. G. (2011). Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infection and Immunity, 79(7), 2871-2879. https://doi.org/10.1128/IAI.01388-10.
Gardinassi, L. G., DeSouza-Vieira, T. S., da Silva, N. O., Garcia, G. R., Borges, V. M., Campos, R. N. S., & Saraiva, E. M. (2017). Molecular signatures of neutrophil extracellular traps in human visceral leishmaniasis. Parasites & Vectors, 10(1), 1-7. https://doi.org/10.1186/s13071-017-2222-5.
Gatto, M., Abreu, M. M. de, Tasca, K. I., Golim, M. de A., Silva, L. D. M. da, Simão, J. C., & Calvi, S. A. (2015). The involvement of TLR2 and TLR4 in cytokine and nitric oxide production in visceral leishmaniasis patients before and after treatment with anti-leishmanial drugs. PLoS One, 10(2), e0117977. https://doi.org/10.1371/journal.pone.0117977.
Giraud, E., Lestinova, T., Derrick, T., Martin, O., Dillon, R. J., Volf, P., & Rogers, M. E. (2018). Leishmania proteophosphoglycans regurgitated from infected sand flies accelerate dermal wound repair and exacerbate leishmaniasis via insulin-like growth factor 1-dependent signalling. PLoS Pathogens, 14(1), e1006794. https://doi.org/10.1371/journal.ppat.1006794.
van Gisbergen, K. P. J. M., Sanchez-Hernandez, M., Geijtenbeek, T. B. H., & van Kooyk, Y. (2005). Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. The Journal of Experimental Medicine, 201(8), 1281-1292. https://doi.org/10.1084/jem.20041276.
Goundry, A., Romano, A., Lima, A. P. C. A., Mottram, J. C., & Myburgh, E. (2018). Inhibitor of serine peptidase 2 enhances Leishmania major survival in the skin through control of monocytes and monocyte-derived cells. The FASEB Journal, 32(3), 1315-1327. https://doi.org/10.1096/fj.201700797R.
Grespan, R., Lemos, H. P., Carregaro, V., Verri, W. A., Souto, F. O., de Oliveira, C. J. F., & Cunha, F. Q. (2012). The protein LJM 111 from lutzomyia longipalpis salivary gland extract (SGE) accounts for the SGE-inhibitory effects upon inflammatory parameters in experimental arthritis model. International Immunopharmacology, 12(4), 603-610. https://doi.org/10.1016/j.intimp.2012.02.004.
Gueirard, P., Laplante, A., Rondeau, C., Milon, G., & Desjardins, M. (2008). Trafficking of Leishmania donovani promastigotes in non-lytic compartments in neutrophils enables the subsequent transfer of parasites to macrophages. Cellular Microbiology, 10(1), 100-111. https://doi.org/10.1111/j.1462-5822.2007.01018.x.
Guimaraes, A., Wen, X., Carvalho, A. M., Brzostowski, J., Valenzuela, J., & Oliveira, F. (2016). Neutrophil recruitment during Leishmania infection: The role of sand fly salivary proteins. The Journal of Immunology, 196(1 Suppl.), 135.9.
Guimaraes, A., Wen, X., Castro, W., Townsend, S., Brzostowski, J., Meneses, C., & Oliveira, F. (2017). A sand fly salivary chemotactic protein drives neutrophil migration and exacerbates Leishmania infection. The Journal of Immunology, 198(1 Suppl), 77.15.
Guimaraes-Costa, A. B., Nascimento, M. T. C., Froment, G. S., Soares, R. P. P., Morgado, F. N., Conceicao-Silva, F., & Saraiva, E. M. (2009). Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6748-6753. https://doi.org/10.1073/pnas.0900226106.
Guimarães-Costa, A. B., Rochael, N. C., Oliveira, F., Echevarria-Lima, J., & Saraiva, E. M. (2017). Neutrophil extracellular traps reprogram IL-4/GM-CSF-induced monocyte differentiation to anti-inflammatory macrophages. Frontiers in Immunology, 8, 523. https://doi.org/10.3389/fimmu.2017.00523.
Hurrell, B. P., Regli, I. B., & Tacchini-Cottier, F. (2016). Different Leishmania species drive distinct neutrophil functions. Trends in Parasitology, 32(5), 392-401. https://doi.org/10.1016/j.pt.2016.02.003.
Hurrell, B. P., Schuster, S., Grün, E., Coutaz, M., Williams, R. A., Held, W., & Tacchini-Cottier, F. (2015). Rapid sequestration of Leishmania mexicana by neutrophils contributes to the development of chronic lesion. PLoS Pathogens, 11(5), e1004929. https://doi.org/10.1371/journal.ppat.1004929.
Jacobs, T., Andrä, J., Gaworski, I., Graefe, S., Mellenthin, K., Krmer, M., & Clos, J. (2005). Complement C3 is required for the progression of cutaneous lesions and neutrophil attraction in Leishmania major infection. Medical Microbiology and Immunology, 194(3), 143-149. https://doi.org/10.1007/s00430-004-0229-y.
Kumar, R., Singh, O. P., Gautam, S., Nylen, S., & Sundar, S. (2014). Enhanced expression of Toll-like receptors 2 and 4, but not 9, in spleen tissue from patients with visceral leishmaniasis. Parasite Immunology, 36(12), 721-725. https://doi.org/10.1111/pim.12145.
Laufs, H., Müller, K., Fleischer, J., Reiling, N., Jahnke, N., Jensenius, J. C., & Laskay, T. (2002). Intracellular survival of Leishmania major in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infection and Immunity, 70(2), 826-835. https://doi.org/10.1128/IAI.70.2.826-835.2002.
Lestinova, T., Rohousova, I., Sima, M., de Oliveira, C. I., & Volf, P. (2017). Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Neglected Tropical Diseases, 11(7), e0005600. https://doi.org/10.1371/journal.pntd.0005600.
Liu, D., & Uzonna, J. E. (2012). The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Frontiers in Cellular and Infection Microbiology, 2, 83. https://doi.org/10.3389/fcimb.2012.00083.
Lopez Kostka, S., Dinges, S., Griewank, K., Iwakura, Y., Udey, M. C., & von Stebut, E. (2009). IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. The Journal of Immunology, 182(5), 3039-3046. https://doi.org/10.4049/jimmunol.0713598.
Marques, C. S., Passero, L. F. D., Vale-Gato, I., Rodrigues, A., Rodrigues, O. R., Martins, C., & Santos-Gomes, G. M. (2015). New insights into neutrophil and Leishmania infantum in vitro immune interactions. Comparative Immunology, Microbiology and Infectious Diseases, 40, 19-29. https://doi.org/10.1016/j.cimid.2015.03.003.
Matlashewski, G. (2002). Leishmania infection and macrophage function. In Farrell J. P. (Ed.), Leishmania: World class parasites (4, pp. 105-113). Boston, MA: Springer.
Mbow, M. L., Bleyenberg, J. A., Hall, L. R., & Titus, R. G. (1998). Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. The Journal of Immunology, 161(10), 5571-5577.
Meagher, L. C., Savill, J. S., Baker, A., & Fuller, R. W. (1992). Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. Journal of Leukocyte Biology, 52(3), 269-273. https://doi.org/10.1002/jlb.52.3.269.
Menezes-Souza, D., Guerra-Sá, R., Carneiro, C. M., Vitoriano-Souza, J., Giunchetti, R. C., Teixeira-Carvalho, A., & Reis, A. B. (2012). Higher expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 chemokines in the skin associated with parasite density in canine visceral leishmaniasis. PLoS Neglected Tropical Diseases, 6(4), e1566. https://doi.org/10.1371/journal.pntd.0001566.
Mollinedo, F., Janssen, H., Iglesia-Vicente, J., de la, Villa-Pulgarin, J. A., & Calafat, J. (2010). Selective fusion of azurophilic granules with Leishmania-containing phagosomes in human neutrophils. Journal of Biological Chemistry, 285(45), 34528-34536. https://doi.org/10.1074/jbc.M110.125302.
Monteiro, M. C., Nogueira, L. G., Almeida Souza, A. A., Ribeiro, J. M. C., Silva, J. S., & Cunha, F. Q. (2005). Effect of salivary gland extract of Leishmania vector, Lutzomyia longipalpis, on leukocyte migration in OVA-induced immune peritonitis. European Journal of Immunology, 35(8), 2424-2433. https://doi.org/10.1002/eji.200526160.
Naderer, T., & McConville, M. J. (2008). The Leishmania-macrophage interaction: A metabolic perspective. Cellular Microbiology, 10(2), 301-308. https://doi.org/10.1111/j.1462-5822.2007.01096.x.
Oliveira, F., de Carvalho, A. M., & de Oliveira, C. I. (2013). Sand-fly saliva-Leishmania-Man: The trigger trio. Frontiers in Immunology, 4, 375. https://doi.org/10.3389/fimmu.2013.00375.
Oualha, R., Barhoumi, M., Marzouki, S., Harigua-Souiai, E., Ben Ahmed, M., & Guizani, I. (2019). Infection of human neutrophils with Leishmania infantum or Leishmania major strains triggers activation and differential cytokines release. Frontiers in Cellular and Infection Microbiology, 9, 153. https://doi.org/10.3389/fcimb.2019.00153.
Peniche, A. G., Bonilla, D. L., Palma, G. I., Melby, P. C., Travi, B. L., & Osorio, E. Y. (2017). A secondary wave of neutrophil infiltration causes trojan and ulceration in lesions of experimental American cutaneous leishmaniasis. PLoS One, 12(6), e0179084. https://doi.org/10.1371/journal.pone.0179084.
Peters, N. C., Egen, J. G., Secundino, N., Debrabant, A., Kimblin, N., Kamhawi, S., & Sacks, D. (2008). In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science, 321(5891), 970-974. https://doi.org/10.1126/science.1159194.
Pitale, D. M., Gendalur, N. S., Descoteaux, A., & Shaha, C. (2019). Leishmania donovani induces autophagy in human blood-derived neutrophils. The Journal of Immunology, 202(4), 1163-1175. https://doi.org/10.4049/jimmunol.1801053.
Podinovskaia, M., & Descoteaux, A. (2015). Leishmania and the macrophage: A multifaceted interaction. Future Microbiology, 10(1), 111-129. https://doi.org/10.2217/fmb.14.103.
Pompeu, M. L., Freitas, L. A., Santos, M. L. V., Khouri, M., & Barral-Netto, M. (1991). Granulocytes in the inflammatory process of BALB/c mice infected by Leishmania amazonensis. A quantitative approach. Acta Tropica, 48(3), 185-193. https://doi.org/10.1016/0001-706X(91)90046-M.
Quintela-Carvalho, G., Luz, N. F., Celes, F. S., Zanette, D. L., Andrade, D., Menezes, D., & Borges, V. M. (2017). Heme drives oxidative stress-associated cell death in human neutrophils infected with Leishmania infantum. Frontiers in Immunology, 8, 1620. https://doi.org/10.3389/fimmu.2017.01620.
Remijsen, Q., Kuijpers, T. W., Wirawan, E., Lippens, S., Vandenabeele, P., & Vanden Burghe, P. (2011). Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differentiation, 18(4), 581-588. https://doi.org/10.1038/cdd.2011.1.
Ribeiro-Gomes, F. L., Otero, A. C., Gomes, N. A., Moniz-de-Souza, M. C. A., Cysne-Finkelstein, L., Arnholdt, A. C., & DosReis, G. A. (2004). Macrophage interactions with neutrophils regulate Leishmania major infection. The Journal of Immunology, 172(7), 4454-4462. https://doi.org/10.4049/jimmunol.172.7.4454.
Ribeiro-Gomes, F. L., & Sacks, D. (2012). The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Frontiers in Cellular and Infection Microbiology, 2, 59. https://doi.org/10.3389/fcimb.2012.00059.
Ritter, U., Frischknecht, F., & van Zandbergen, G. (2009). Are neutrophils important host cells for Leishmania parasites? Trends in Parasitology, 25(11), 505-510. https://doi.org/10.1016/j.pt.2009.08.003.
Rochael, N. C., Guimarães-Costa, A. B., Nascimento, M. T. C., DeSouza-Vieira, T. S., Oliveira, M. P., Garcia e Souza, L. F., & Saraiva, E. M. (2016). Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Scientific Reports, 5(1), 1-11. https://doi.org/10.1038/srep18302.
Rostan, O., Gangneux, J. -P., Piquet-Pellorce, C., Manuel, C., McKenzie, A. N. J., Guiguen, C., & Robert-Gangneux, F. (2013). The IL-33/ST2 axis is associated with human visceral leishmaniasis and suppresses Th1 responses in the livers of BALB/c mice infected with Leishmania donovani. MBio, 4(5), https://doi.org/10.1128/mBio.00383-13.
Sacramento, L., Trevelin, S. C., Nascimento, M. S., Lima-Jùnior, D. S., Costa, D. L., Almeida, R. P., & Carregaro, V. (2015). Toll-like receptor 9 signaling in dendritic cells regulates neutrophil recruitment to inflammatory foci following Leishmania infantum infection. Infection and Immunity, 83(12), 4604-4616. https://doi.org/10.1128/IAI.00975-15.
Sacramento, L. A., da Costa, J. L., de Lima, M. H. F., Sampaio, P. A., Almeida, R. P., Cunha, F. Q., & Carregaro, V. (2017). Toll-like receptor 2 is required for inflammatory process development during Leishmania infantum infection. Frontiers in Microbiology, 8, 262. https://doi.org/10.3389/fmicb.2017.00262.
Sacramento, L. A., Cunha, F. Q., de Almeida, R. P., da Silva, J. S., & Carregaro, V. (2014). Protective role of 5-lipoxigenase during Leishmania infantum: Infection is associated with Th17 subset. BioMed Research International, 2014, https://doi.org/10.1155/2014/264270.
Savill, J. S., Wyllie, A. H., Henson, J. E., Walport, M. J., Henson, P. M., & Haslett, C. (1989). Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. Journal of Clinical Investigation, 83(3), 865-875. https://doi.org/10.1172/JCI113970.
Scapini, P., Lapinet-Vera, J. A., Gasperini, S., Calzetti, F., Bazzoni, F., & Cassatella, M. A. (2000). The neutrophil as a cellular source of chemokines. Immunological Reviews, 177, 195-203.
Sharma, S., Davis, R. E., Srivastva, S., Nylén, S., Sundar, S., & Wilson, M. E. (2016). A subset of neutrophils expressing markers of antigen-presenting cells in human visceral leishmaniasis. Journal of Infectious Diseases, 214(10), 1531-1538. https://doi.org/10.1093/infdis/jiw394.
Sharma, S., Srivastva, S., Davis, R. E., Singh, S. S., Kumar, R., Nylén, S., & Sundar, S. (2017). The phenotype of circulating neutrophils during visceral leishmaniasis. The American Journal of Tropical Medicine and Hygiene, 97(3), 767-770. https://doi.org/10.4269/ajtmh.16-0722.
Silverman, J. M., Clos, J., de'Oliveira, C. C., Shirvani, O., Fang, Y., Wang, C., & Reiner, N. E. (2010). An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. Journal of Cell Science, 123(6), 842-852. https://doi.org/10.1242/jcs.056465.
Teixeira, C. R., Santos, C. da S., Prates, D. B., Santos, D., T, R., Araújo-Santos, T., & Brodskyn, C. I. (2018). Lutzomyia longipalpis saliva drives interleukin-17-induced neutrophil recruitment favoring Leishmania infantum infection. Frontiers in Microbiology, 9, 881. https://doi.org/10.3389/fmicb.2018.00881.
Thalhofer, C. J., Chen, Y., Sudan, B., Love-Homan, L., & Wilson, M. E. (2011). Leukocytes infiltrate the skin and draining lymph nodes in response to the protozoan Leishmania infantum chagasi. Infection and Immunity, 79(1), 108-117. https://doi.org/10.1128/IAI.00338-10.
Titus, R. G., & Ribeiro, J. M. (1988). Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science, 239(4845), 1306-1308. https://doi.org/10.1126/science.3344436.
Tolouei, S., Hejazi, S. H., Ghaedi, K., Khamesipour, A., & Hasheminia, S. J. (2013). TLR2 and TLR4 in cutaneous leishmaniasis caused by Leishmania major. Scandinavian Journal of Immunology, 78(5), 478-484. https://doi.org/10.1111/sji.12105.
Tuon, F. F., Fernandes, E. R., Duarte, M. I. S., & Amato, V. S. (2012). Expression of TLR2 and TLR4 in lesions of patients with tegumentary American leishmaniasis. Revista Do Instituto de Medicina Tropical de São Paulo, 54(3), 159-164. https://doi.org/10.1590/S0036-46652012000300008.
Ueno, N., & Wilson, M. E. (2012). Receptor-mediated phagocytosis of Leishmania: Implications for intracellular survival. Trends in Parasitology, 28(8), 335-344. https://doi.org/10.1016/j.pt.2012.05.002.
Valenzuela, J. G. (2004). Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. Journal of Experimental Biology, 207(21), 3717-3729. https://doi.org/10.1242/jeb.01185.
Valério-Bolas, A., Pereira, M., Alexandre-Pires, G., Santos-Mateus, D., Rodrigues, A., Rafael-Fernandes, M., & Santos-Gomes, G. (2019). Intracellular and extracellular effector activity of mouse neutrophils in response to cutaneous and visceral Leishmania parasites. Cellular Immunology, 335, 76-84. https://doi.org/10.1016/j.cellimm.2018.11.003.
Veer, M. J., de, Curtis, J. M., Baldwin, T. M., DiDonato, J. A., Sexton, A., McConville, M. J., & Schofield, L. (2003). MyD88 is essential for clearance of Leishmania major: Possible role for lipophosphoglycan and Toll-like receptor 2 signaling. European Journal of Immunology, 33(10), 2822-2831. https://doi.org/10.1002/eji.200324128.
Verçosa, B. L. A., Melo, M. N., Puerto, H. L. D., Mendonça, I. L., & Vasconcelos, A. C. (2012). Apoptosis, inflammatory response and parasite load in skin of Leishmania (Leishmania) chagasi naturally infected dogs: A histomorphometric analysis. Veterinary Parasitology, 189(2-4), 162-170. https://doi.org/10.1016/j.vetpar.2012.04.035.
Verma, S., Das, S., Mandal, A., Ansari, M. Y., Kumari, S., Mansuri, R., & Das, P. (2017). Role of inhibitors of serine peptidases in protecting Leishmania donovani against the hydrolytic peptidases of sand fly midgut. Parasites & Vectors, 10(1), https://doi.org/10.1186/s13071-017-2239-9.
Waitumbi, J., & Warburg, A. (1998). Phlebotomus papatasi saliva inhibits protein phosphatase activity and nitric oxide production by murine macrophages. Infection and Immunity, 66(4), 1534-1537.
Wenzel, A., & Van Zandbergen, G. (2009). Lipoxin A4 receptor dependent leishmania infection: Brief definite report. Autoimmunity, 42(4), 331-333. https://doi.org/10.1080/08916930902828239.
Wilson, M. E., Innes, D. J., de Q. Sousa, A., & Pearson, R. D. (1987). Early histopathology of experimental infection with Leishmania donovani in hamsters. The Journal of Parasitology, 73(1), 55-63. https://doi.org/10.2307/3282344.
Wilson, M. E., & Pearson, R. D. (1988). Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infection and Immunity, 56(2), 363-36.
Yang, D., de la Rosa, G., Tewary, P., & Oppenheim, J. J. (2009). Alarmins link neutrophils and dendritic cells. Trends in Immunology, 30(11), 531-537. https://doi.org/10.1016/j.it.2009.07.004.
Yizengaw, E., Getahun, M., Tajebe, F., Cruz Cervera, E., Adem, E., Mesfin, G., & Kropf, P. (2016). Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions. Frontiers in Immunology, 7, 517. https://doi.org/10.3389/fimmu.2016.00517.
van Zandbergen, G., Hermann, N., Laufs, H., Solbach, W., & Laskay, T. (2002). Leishmania promastigotes release a granulocyte chemotactic factor and induce interleukin-8 release but inhibit gamma interferon-inducible protein 10 production by neutrophil granulocytes. Infection and Immunity, 70(8), 4177-4184. https://doi.org/10.1128/IAI.70.8.4177-4184.2002.
Zandbergen, Ger, van, Klinger, M., Mueller, A., Dannenberg, S., Gebert, A., Solbach, W., & Laskay, T. (2004). Cutting edge: Neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. The Journal of Immunology, 173(11), 6521-6525. https://doi.org/10.4049/jimmunol.173.11.6521.
Contributed Indexing:
Keywords: dendritic cells; innate immunity and leishmaniasis; macrophages; neutrophils; sandfly; trojan horse; visceral leishmaniasis
Entry Date(s):
Date Created: 20201221 Date Completed: 20210920 Latest Revision: 20210920
Update Code:
20240105
DOI:
10.1002/jcp.30029
PMID:
33345353
Czasopismo naukowe
Neutrophils with their array of microbicidal activities are the first innate immune cells to guard against infection. They are also most crucial for the host's initial defense against Leishmania parasites which cause clinically diverse diseases ranging from self-healing cutaneous leishmaniasis (CL) to a more severe visceral form, visceral leishmaniasis (VL). Neutrophils are recruited in large numbers at the infection site after bite of sandfly, which is the vector for the disease. The initial interaction of neutrophils with the parasites may modulate the subsequent innate and adaptive immune responses and hence affect the disease outcome. The purpose of this review is to comprehensively appraise the role of neutrophils during the early stages of Leishmania infection with a focus on the visceral form of the disease. In the past decade, new insights regarding the role of neutrophils in VL have surfaced which have been extensively elaborated in the present review. In addition, since much of the information regarding neutrophil-Leishmania early interaction has accumulated through studies on mouse models of CL, these studies are also revisited. We begin by reviewing the factors which drive the recruitment of neutrophils at the site of injection by the sandfly. We then discuss the studies delineating the molecular mechanisms involved in the uptake of the Leishmania parasite by neutrophils and how the parasite subverts their microbicidal functions. In the end, the interaction of infected neutrophils with macrophages and dendritic cells is summarized.
(© 2020 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies