Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Pyramidal weakness: Is it time to retire the term?

Tytuł :
Pyramidal weakness: Is it time to retire the term?
Autorzy :
Castle-Kirszbaum M; Department of Neurosurgery, Monash Health, Melbourne, Australia.
Goldschlager T; Department of Neurosurgery, Monash Health, Melbourne, Australia.; Department of Surgery, Monash University, Melbourne, Australia.
Pokaż więcej
Źródło :
Clinical anatomy (New York, N.Y.) [Clin Anat] 2021 Apr; Vol. 34 (3), pp. 478-482. Date of Electronic Publication: 2020 Dec 31.
Typ publikacji :
Journal Article; Review
Język :
Imprint Name(s) :
Original Publication: New York : Alan R. Liss, Inc., [c1988-
References :
Anderson, N. E. (2005). Detection of focal cerebral hemisphere lesions using the neurological examination. Journal of Neurology, Neurosurgery & Psychiatry, 76, 545-549.
Andre, P., D'Ascanio, P., Gennari, A., Pirodda, A., & Pompeiano, O. (1991). Microinjections of alpha 1- and alpha 2-noradrenergic substances in the cerebellar vermis of decerebrate cats affect the gain of the vestibulospinal reflexes. Archives Italiennes de Biologie, 129, 113-160.
Bradnam, L. V., Stinear, C. M., & Byblow, W. D. (2013). Ipsilateral motor pathways after stroke: Implications for non-invasive brain stimulation. Frontiers in Human Neuroscience, 7, 184. eCollection 2013.
Brazis, P., Masdeu, J., & Biller, J. (2016). Localization in clinical neurology (7th ed.). USA: Lippincott Williams & Wilkins.
Brown, P. (1994). Pathophysiology of spasticity. Journal of Neurology, Neurosurgery & Psychiatry, 57, 773-777.
Bucy, P. C., Keplinger, J. E., & Siqueira, E. B. (1964). Destruction of the “pyramidal tract” in man. Journal of Neurosurgery, 21, 385-398.
Campbell, W. W. (2013). DeJong's the neurologic examination (7th ed. Ed). Philadelphia, PA: Lippincott Williams & Wilkins.
Candow, D. G., & Chilibeck, P. D. (2005). Differences in size, strength, and power of upper and lower body muscle groups in young and older men. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 60, 148-156.
Danneskiold-Samsøe, B., Bartels, E. M., Bülow, P. M., Lund, H., Stockmarr, A., Holm, C. C., … Bliddal, H. (2009). Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiologica, 197, 1-68.
Daroff, R. B., Jankovic, J., Mazziotta, J. C., & Pomeroy, S. L. (Eds.). (2016). Bradley's neurology in clinical practice (7th ed.). London New York Oxford Philadelphia St Louis Sydney Toronto: Elsevier.
Davidson, A. G., & Buford, J. A. (2006). Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: Stimulus triggered averaging. Experimental Brain Research, 173, 25-39.
Davidson, A. G., Schieber, M. H., & Buford, J. A. (2007). Bilateral spike-triggered average effects in arm and shoulder muscles from the monkey pontomedullary reticular formation. The Journal of Neuroscience, 27, 8053-8058.
Fetz, E. E., Cheney, P. D., Mewes, K., & Palmer, S. (1989). Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Progress in Brain Research, 80, 437-449.
Güngör, A., Baydin, S., Middlebrooks, E. H., Tanriover, N., Isler, C., & Rhoton, A. L. (2017). The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. Journal of Neurosurgery, 126, 945-971.
Hauser, S. (Ed.). (2013). Harrison's neurology in clinical medicine (3rd ed.). New York: McGraw-Hill Medical.
Hepp-Reymond, M. C. (1986). Functional organization of motor cortex and its participation in voluntary movements. In H. Seklis & J. Erwin (Eds.), Comparative primate biology (pp. 501-624). New York: Liss.
Hosking, J. P., Bhat, U. S., Dubowitz, V., & Edwards, R. H. (1976). Measurements of muscle strength and performance in children with normal and diseased muscle. Archives of Disease in Childhood, 51, 957-963.
Lawrence, D. G., & Kuypers, H. G. (1968). The functional organization of the motor system in the monkey. I. the effects of bilateral pyramidal lesions. Brain, 91, 1-14.
Mamata, H., Mamata, Y., Westin, C.-F., Shenton, M. E., Kikinis, R., Jolesz, F. A., & Maier, S. E. (2002). High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. American Journal of Neuroradiology, 23, 67-75.
Ropper, A. H., Samuels, M. A., & Klein, J. (2019). Adams and Victor's principles of neurology (11th ed.). New York: McGraw-Hill Education.
Standring, S. (Ed.). (2016). Gray's anatomy: The anatomical basis of clinical practice (41st ed.). New York: Elsevier Limited.
Swaiman, K. F. (Ed.). (2012). Swaiman's pediatric neurology: Principles and practice (5th ed.). Philadelphia: Elsevier/Saunders.
Thijs, R., Notermans, N., Wokke, J., van der Graaf, Y., & van Gijn, J. (1998). Distribution of muscle weakness of central and peripheral origin. Journal of Neurology, Neurosurgery, and Psychiatry, 65, 794-796.
Wagley, P. F. (1945). A study of spasticity and paralysis. Bulletin of the Johns Hopkins Hospital, 77, 218-273.
Wiles, C. M. (2017). Pyramidal weakness. Practical Neurology, 17, 241-242.
Zaaimi, B., Edgley, S. A., Soteropoulos, D. S., & Baker, S. N. (2012). Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain, 135, 2277-2289.
Contributed Indexing :
Keywords: corticospinal tract; false localizing signs; pyramidal weakness
Entry Date(s) :
Date Created: 20201221 Latest Revision: 20210304
Update Code :
Czasopismo naukowe
Pyramidal weakness, that is, the weakness that preferentially spares the antigravity muscles, is considered an integral part of the upper motor neuron syndrome. Despite its name, pyramidal weakness has very little to do with the pyramidal tract, and preeminent texts on neurology, neuroanatomy, and clinical examination differ considerably in their descriptions and localization of this enigmatic finding. Evidence from human and nonhuman primate studies demonstrates that lesions confined only to the corticospinal (pyramidal) tract cause significant deficits in fine motor control of the hand, but do not cause posturing or patterned weakness of the extremities. Lesioning of the corticofugal fibers, particularly the corticoreticular and corticopontine tracts, leads to dysbalanced output from reticulospinal, and vestibulospinal systems, which along with changes in rubrospinal tract output balance, probably accounts for the pyramidal weakness pattern. Importantly, this would delineate that pyramidal weakness could only be incited by lesions above the brainstem. It has also been suggested that the inherently greater strength of the antigravity musculature is the substrate for pyramidal weakness, independent of any preferential motor innervation. These hypotheses require further testing in myometric studies with carefully selected participants.
(© 2020 American Association of Clinical Anatomists.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies