Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Physiological and transcriptomic analyses of yellow horn (Xanthoceras sorbifolia) provide important insights into salt and saline-alkali stress tolerance.

Tytuł:
Physiological and transcriptomic analyses of yellow horn (Xanthoceras sorbifolia) provide important insights into salt and saline-alkali stress tolerance.
Autorzy:
Wang J; College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China.; Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China.
Zhang Y; College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China.; Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China.
Yan X; College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China.; Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China.
Guo J; College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China.; Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu, Shanxi, China.
Źródło:
PloS one [PLoS One] 2020 Dec 22; Vol. 15 (12), pp. e0244365. Date of Electronic Publication: 2020 Dec 22 (Print Publication: 2020).
Typ publikacji:
Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Gene Regulatory Networks*
Electrolytes/*metabolism
Gene Expression Profiling/*methods
Malondialdehyde/*metabolism
Sapindaceae/*growth & development
China ; Chlorophyll/metabolism ; Gene Expression Regulation, Plant ; High-Throughput Nucleotide Sequencing ; Plant Proteins/genetics ; Salt Tolerance ; Sapindaceae/genetics ; Sapindaceae/metabolism ; Sequence Analysis, RNA ; Stress, Physiological
References:
BMC Evol Biol. 2019 Mar 13;19(1):77. (PMID: 30866803)
Plant Physiol. 2002 Nov;130(3):1443-53. (PMID: 12428009)
Nat Biotechnol. 2011 May 15;29(7):644-52. (PMID: 21572440)
Plant J. 2008 Nov;56(4):575-89. (PMID: 18643966)
Int J Mol Sci. 2015 Dec 22;17(1):. (PMID: 26703583)
Physiol Mol Biol Plants. 2017 Jan;23(1):59-72. (PMID: 28250584)
Bioinformatics. 1998;14(9):755-63. (PMID: 9918945)
BMC Genomics. 2017 Jan 5;18(1):24. (PMID: 28056779)
Plant Physiol Biochem. 2018 Aug;129:168-179. (PMID: 29885601)
Front Plant Sci. 2014 Apr 22;5:151. (PMID: 24795738)
Front Plant Sci. 2018 Oct 09;9:1458. (PMID: 30356802)
Ecol Evol. 2015 Oct 02;5(20):4655-70. (PMID: 26668730)
Genome Biol. 2009;10(3):R25. (PMID: 19261174)
Front Plant Sci. 2016 Oct 20;7:1579. (PMID: 27812364)
BMC Plant Biol. 2018 Oct 16;18(1):238. (PMID: 30326849)
PLoS One. 2013 Sep 11;8(9):e74441. (PMID: 24040247)
Anal Biochem. 1976 May 7;72:248-54. (PMID: 942051)
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22. (PMID: 21715386)
PLoS One. 2015 May 06;10(5):e0126050. (PMID: 25946429)
J Exp Bot. 2014 Mar;65(5):1259-70. (PMID: 24520019)
PLoS One. 2015 Oct 20;10(10):e0140507. (PMID: 26485030)
Front Plant Sci. 2015 Nov 19;6:1004. (PMID: 26635831)
Plant Mol Biol. 2017 Jul;94(4-5):509-530. (PMID: 28681139)
Anal Biochem. 2005 Dec 15;347(2):201-7. (PMID: 16289006)
Plant Cell Rep. 2010 Aug;29(8):835-44. (PMID: 20490502)
Plant Cell Physiol. 2013 Jul;54(7):1041-55. (PMID: 23592587)
Sci Rep. 2018 Sep 10;8(1):13515. (PMID: 30201952)
Hereditas. 2020 Mar 31;157(1):9. (PMID: 32234076)
Annu Rev Plant Biol. 2008;59:651-81. (PMID: 18444910)
Plants (Basel). 2019 Mar 12;8(3):. (PMID: 30871082)
Plant Physiol Biochem. 2019 Feb;135:546-553. (PMID: 30447941)
BMC Bioinformatics. 2011 Aug 04;12:323. (PMID: 21816040)
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30. (PMID: 24288371)
RSC Adv. 2020 Feb 12;10(11):6512-6519. (PMID: 35496033)
J Plant Physiol. 2018 Apr 17;226:12-21. (PMID: 29689430)
Saudi J Biol Sci. 2019 Sep;26(6):1298-1304. (PMID: 31516361)
Int J Mol Sci. 2015 Aug 28;16(9):20392-416. (PMID: 26343644)
Gene. 2014 Oct 1;549(1):113-22. (PMID: 25058012)
Mol Biol Res Commun. 2014 Mar;3(1):67-75. (PMID: 27843977)
Cell Mol Life Sci. 2017 Apr;74(7):1165-1176. (PMID: 27677492)
J Integr Plant Biol. 2013 Mar;55(3):262-76. (PMID: 23176661)
Front Plant Sci. 2018 Feb 27;9:249. (PMID: 29535755)
BMC Plant Biol. 2017 Feb 10;17(1):41. (PMID: 28187710)
Int J Mol Sci. 2017 Sep 12;18(9):. (PMID: 28895882)
Int J Mol Sci. 2018 Oct 08;19(10):. (PMID: 30297676)
Plant J. 2008 Nov;56(3):411-22. (PMID: 18643991)
Int J Mol Sci. 2019 Nov 25;20(23):. (PMID: 31775274)
Sci Rep. 2017 Aug 17;7(1):8656. (PMID: 28819160)
Nucleic Acids Res. 2010 Jan;38(Database issue):D822-7. (PMID: 19858103)
Plant Mol Biol. 1996 Nov;32(3):543-7. (PMID: 8980504)
Sci Rep. 2018 Jun 25;8(1):9586. (PMID: 29941956)
Molecules. 2016 Dec 09;21(12):. (PMID: 27941678)
Plants (Basel). 2020 Apr 04;9(4):. (PMID: 32260413)
Mol Plant Pathol. 2012 May;13(4):338-49. (PMID: 22017757)
PLoS One. 2020 Jul 24;15(7):e0236588. (PMID: 32706804)
Trends Plant Sci. 2004 Oct;9(10):490-8. (PMID: 15465684)
Front Plant Sci. 2016 Jul 04;7:931. (PMID: 27458463)
PLoS One. 2016 Aug 25;11(8):e0160660. (PMID: 27560934)
BMC Plant Biol. 2019 Aug 15;19(1):355. (PMID: 31416418)
PLoS One. 2015 Dec 11;10(12):e0144509. (PMID: 26659465)
Plant Physiol. 2010 Nov;154(3):1254-71. (PMID: 20807999)
PLoS One. 2017 Oct 4;12(10):e0185732. (PMID: 28976994)
Phytochemistry. 2015 Feb;110:13-21. (PMID: 25579998)
Substance Nomenclature:
0 (Electrolytes)
0 (Plant Proteins)
1406-65-1 (Chlorophyll)
4Y8F71G49Q (Malondialdehyde)
Entry Date(s):
Date Created: 20201222 Date Completed: 20210315 Latest Revision: 20231110
Update Code:
20240105
PubMed Central ID:
PMC7755187
DOI:
10.1371/journal.pone.0244365
PMID:
33351842
Czasopismo naukowe
Yellow horn (Xanthoceras sorbifolia) is an oil-rich woody plant cultivated for bio-energy production in China. Soil saline-alkalization is a prominent agricultural-related environmental problem limiting plant growth and productivity. In this study, we performed comparative physiological and transcriptomic analyses to examine the mechanisms of X. sorbifolia seedling responding to salt and alkaline-salt stress. With the exception of chlorophyll content, physiological experiments revealed significant increases in all assessed indices in response to salt and saline-alkali treatments. Notably, compared with salt stress, we observed more pronounced changes in electrolyte leakage (EL) and malondialdehyde (MDA) levels in response to saline-alkali stress, which may contribute to the greater toxicity of saline-alkali soils. In total, 3,087 and 2,715 genes were differentially expressed in response to salt and saline-alkali treatments, respectively, among which carbon metabolism, biosynthesis of amino acids, starch and sucrose metabolism, and reactive oxygen species signaling networks were extensively enriched, and transcription factor families of bHLH, C2H2, bZIP, NAC, and ERF were transcriptionally activated. Moreover, relative to salt stress, saline-alkali stress activated more significant upregulation of genes related to H+ transport, indicating that regulation of intracellular pH may play an important role in coping with saline-alkali stress. These findings provide new insights for investigating the physiological changes and molecular mechanisms underlying the responses of X. sorbifolia to salt and saline-alkali stress.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies