Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The role of brain size on mammalian population densities.

Tytuł:
The role of brain size on mammalian population densities.
Autorzy:
González-Suárez M; Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK.
Gonzalez-Voyer A; Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, México.
von Hardenberg A; Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Chester, UK.
Santini L; Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University, Nijmegen, The Netherlands.; National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Monterotondo (Rome), Italy.
Źródło:
The Journal of animal ecology [J Anim Ecol] 2021 Mar; Vol. 90 (3), pp. 653-661. Date of Electronic Publication: 2020 Dec 22.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Oxford : Blackwell
Original Publication: Oxford, British Ecological Society.
MeSH Terms:
Carnivora*
Mammals*
Animals ; Brain ; Organ Size ; Phylogeny ; Population Density ; Primates
References:
Amiel, J. J., Tingley, R., & Shine, R. (2011). Smart moves: Effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS ONE, 6, e18277. https://doi.org/10.1371/journal.pone.0018277.
Anderson, K. J., & Jetz, W. (2005). The broad-scale ecology of energy expenditure of endotherms. Ecology Letters, 8, 310-318. https://doi.org/10.1111/j.1461-0248.2005.00723.x.
Barton, R. A., & Capellini, I. (2011). Maternal investment, life histories, and the costs of brain growth in mammals. Proceedings of the National Academy of Sciences of the United States of America, 108, 6169-6174. https://doi.org/10.1073/pnas.1019140108.
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. Proceedings of the National Academy of Sciences of the United States of America, 113, 2532-2537. https://doi.org/10.1073/pnas.1505913113.
Blackburn, T. M., & Gaston, K. J. (1999). The relationship between animal abundance and body size: A review of the mechanisms. Advances in Ecological Research, 28, 181-210.
Brown, J. H. (1995). Macroecology. University of Chicago Press.
Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699. https://doi.org/10.1038/290699a0.
Damuth, J. (2007). A macroevolutionary explanation for energy equivalence in the scaling of body size and population density. The American Naturalist, 169, 621-631. https://doi.org/10.1086/513495.
DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology & Evolution, 1, 112. https://doi.org/10.1038/s41559-017-0112.
Dobson, A., Tilman, D., & Holt, R. D. (2020). Unsolved problems in ecology. Princeton University Press.
Dunbar, R. I. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 6, 178-190.
Faurby, S., Davis, M., Pedersen, R. Ø., Schowanek, S. D., Antonelli1, A., & Svenning, J.-C. (2018). PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology, 99, 2626.
Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1-15. https://doi.org/10.1086/284325.
Freckleton, R. P. (2002). On the misuse of residuals in ecology: Regression of residuals vs. multiple regression. Journal of Animal Ecology, 71, 542-545. https://doi.org/10.1046/j.1365-2656.2002.00618.x.
García-Berthou, E. (2001). On the misuse of residuals in ecology: Testing regression residuals vs. the analysis of covariance. Journal of Animal Ecology, 70, 708-711. https://doi.org/10.1046/j.1365-2656.2001.00524.x.
González-Suárez, M., Lucas, P. M., & Revilla, E. (2012). Biases in comparative analyses of extinction risk: Mind the gap. Journal of Animal Ecology, 81, 1211-1222. https://doi.org/10.1111/j.1365-2656.2012.01999.x.
Gonzalez-Voyer, A., González-Suárez, M., Vilà, C., & Revilla, E. (2016). Large brain size indirectly increases vulnerability to extinction in mammals. Evolution, 70, 1364-1375.
Gonzalez-Voyer, A., & von Hardenberg, A. (2014). Introduction to phylogenetic path analysis. In L. Z. Garamszegi (Ed.), Modern phylogenetic comparative methods and their application in evolutionary biology (pp. 201-229). Springer-Verlag.
Hedges, S. B., Marin, J., Suleski, M., Paymer, M., & Kumar, S. (2015). Tree of life reveals clock-like speciation and diversification. Molecular Biology and Evolution, 32(4), 835-845. https://doi.org/10.1093/molbev/msv037.
Herculano-Houzel, S. (2011). Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE, 6, e17514. https://doi.org/10.1371/journal.pone.0017514.
Hofman, M. A. (1983). Energy metabolism, brain size and longevity in mammals. The Quarterly Review of Biology, 58, 495-512. https://doi.org/10.1086/413544.
Isaac, N. J., Storch, D., & Carbone, C. (2011). Taxonomic variation in size-density relationships challenges the notion of energy equivalence. Biology Letters, 7, 615-618. https://doi.org/10.1098/rsbl.2011.0128.
Isaac, N. J., Storch, D., & Carbone, C. (2013). The paradox of energy equivalence. Global Ecology and Biogeography, 22, 1-5. https://doi.org/10.1111/j.1466-8238.2012.00782.x.
Isler, K., & van Schaik, C. P. (2006). Metabolic costs of brain size evolution. Biology Letters, 2, 557-560. https://doi.org/10.1098/rsbl.2006.0538.
Isler, K., & van Schaik, C. (2009). The expensive brain: A framework for explaining evolutionary changes in brain size. Journal of Human Evolution, 57, 392-400. https://doi.org/10.1016/j.jhevol.2009.04.009.
Karbowski, J. (2007). Global and regional brain metabolic scaling and its functional consequences. BMC Biology, 5, 18. https://doi.org/10.1186/1741-7007-5-18.
Maklakov, A., Immler, S., Gonzalez-Voyer, A., Rönn, J., & Kolm, N. (2011). Brains and the city: Big-brained passerine birds succeed in urban environments. Biology Letters, 7, 730-732. https://doi.org/10.1098/rsbl.2011.0341.
Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149, 646-667. https://doi.org/10.1086/286013.
Mink, J. W., Blumenschine, R. J., & Adams, D. B. (1981). Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 241, R203-R212. https://doi.org/10.1152/ajpregu.1981.241.3.R203.
Nagy, K., Girard, I., & Brown, T. (1999). Energetics of free-ranging mammals, reptiles, and birds. Annual Review of Nutrition, 19, 247-277. https://doi.org/10.1146/annurev.nutr.19.1.247.
Navarrete, A., van Schaik, C. P., & Isler, K. (2011). Energetics and the evolution of human brain size. Nature, 480, 91. https://doi.org/10.1038/nature10629.
Novosolov, M., Rodda, G. H., North, A. C., Butchart, S. H., Tallowin, O. J., Gainsbury, A. M., & Meiri, S. (2017). Population density-range size relationship revisited. Global Ecology and Biogeography, 26, 1088-1097. https://doi.org/10.1111/geb.12617.
Pasquaretta, C., Busia, L., Ferrari, C., Bogliani, G., Reale, D., & Von Hardenberg, A. (2015). Helpers influence on territory use and maintenance in Alpine marmot groups. Behaviour, 152, 1391-1412. https://doi.org/10.1163/1568539X-00003284.
Pedersen, R. Ø., Faurby, S., & Svenning, J.-C. (2017). Shallow size-density relations within mammal clades suggest greater intra-guild ecological impact of large-bodied species. Journal of Animal Ecology, 86, 1205-1213. https://doi.org/10.1111/1365-2656.12701.
Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42, 659-669. https://doi.org/10.1017/pab.2016.6.
R Development Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Reader, S. M., & Laland, K. E. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 99, 4436-4441. https://doi.org/10.1073/pnas.062041299.
Santini, L., González-Suárez, M., Russo, D., Gonzalez-Voyer, A., von Hardenberg, A., & Ancillotto, L. (2019). One strategy does not fit all: Determinants of urban adaptation in mammals. Ecology Letters, 22, 365-376. https://doi.org/10.1111/ele.13199.
Santini, L., Isaac, N. J. B., & Ficetola, G. F. (2018). TetraDENSITY: A database of population density estimates in terrestrial vertebrates. Global Ecology and Biogeography, 27, 787-791. https://doi.org/10.1111/geb.12756.
Santini, L., Isaac, N. J., Maiorano, L., Ficetola, G. F., Huijbregts, M. A., Carbone, C., & Thuiller, W. (2018). Global drivers of population density in terrestrial vertebrates. Global Ecology and Biogeography, 27, 968-979. https://doi.org/10.1111/geb.12758.
Shipley, B. (2000). Cause and correlation in biology: A user's guide to path analysis, structural equations, and causal inference. Cambridge University Press.
Shultz, S., & Dunbar, R. I. M. (2006). Both social and ecological factors predict ungulate brain size. Proceedings of the Royal Society B: Biological Sciences, 273, 207-215. https://doi.org/10.1098/rspb.2005.3283.
Silva, M., Brimacombe, M., & Downing, J. A. (2001). Effects of body mass, climate, geography, and census area on population density of terrestrial mammals. Global Ecology and Biogeography, 10, 469-485. https://doi.org/10.1046/j.1466-822x.2001.00261.x.
Silva, M., Brown, J. H., & Downing, J. A. (1997). Differences in population density and energy use between birds and mammals: A macroecological perspective. Journal of Animal Ecology, 66(3), 327-340. https://doi.org/10.2307/5979.
Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. The American Naturalist, 172, S63-S71. https://doi.org/10.1086/588304.
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 102, 5460-5465. https://doi.org/10.1073/pnas.0408145102.
Sol, D., Timmermans, S., & Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour, 63, 495-502. https://doi.org/10.1006/anbe.2001.1953.
Striedter, G. F. (2005). Principles of brain evolution. Sinauer Associates Inc.
Tsuboi, M., van der Bijl, W., Kopperud, B. T., Erritzøe, J., Voje, K. L., Kotrschal, A., Yopak, K. E., Collin, S. P., Iwaniuk, A. N., & Kolm, N. (2018). Breakdown of brain-body allometry and the encephalization of birds and mammals. Nature Ecology & Evolution, 2, 1492-1500. https://doi.org/10.1038/s41559-018-0632-1.
Tung Ho, L. S., & Ané, C. (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology, 63, 397-408. https://doi.org/10.1093/sysbio/syu005.
van der Bijl, W. (2017). phylopath: Perform phylogenetic path analysis. R package version 0.3.1. Retrieved from https://github.com/Ax3man/phylopath.
Visalberghi, E., Fragaszy, D. M., & Savage-Rumbaugh, S. (1995). Performance in a tool-using task by common chimpanzees (Pan troglodytes), bonobos (Pan paniscus), an orangutan (Pongo pygmaeus), and capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 109, 52. https://doi.org/10.1037/0735-7036.109.1.52.
von Hardenberg, A., & Gonzalez-Voyer, A. (2013). Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution, 67, 378-387. https://doi.org/10.1111/j.1558-5646.2012.01790.x.
White, E. P., Ernest, S. K., Kerkhoff, A. J., & Enquist, B. J. (2007). Relationships between body size and abundance in ecology. Trends in Ecology & Evolution, 22, 323-330. https://doi.org/10.1016/j.tree.2007.03.007.
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. Ecology, 95, 2027. https://doi.org/10.1890/13-1917.1.
Contributed Indexing:
Keywords: Mammalia; body mass; body size; brain mass; comparative methods; diet; phylogenetic path analysis; population abundance
Entry Date(s):
Date Created: 20201223 Date Completed: 20210419 Latest Revision: 20210419
Update Code:
20240105
DOI:
10.1111/1365-2656.13397
PMID:
33354764
Czasopismo naukowe
The local abundance or population density of different organisms often varies widely. Understanding what determines this variation is an important, but not yet fully resolved question in ecology. Differences in population density are partly driven by variation in body size and diet among organisms. Here we propose that the size of an organism' brain could be an additional, overlooked, driver of mammalian population densities. We explore two possible contrasting mechanisms by which brain size, measured by its mass, could affect population density. First, because of the energetic demands of larger brains and their influence on life history, we predict mammals with larger relative brain masses would occur at lower population densities. Alternatively, larger brains are generally associated with a greater ability to exploit new resources, which would provide a competitive advantage leading to higher population densities among large-brained mammals. We tested these predictions using phylogenetic path analysis, modelling hypothesized direct and indirect relationships between diet, body mass, brain mass and population density for 656 non-volant terrestrial mammalian species. We analysed all data together and separately for marsupials and the four taxonomic orders with most species in the dataset (Carnivora, Cetartiodactyla, Primates, Rodentia). For all species combined, a single model was supported showing lower population density associated with larger brains, larger bodies and more specialized diets. The negative effect of brain mass was also supported for separate analyses in Primates and Carnivora. In other groups (Rodentia, Cetartiodactyla and marsupials) the relationship was less clear: supported models included a direct link from brain mass to population density but 95% confidence intervals of the path coefficients overlapped zero. Results support our hypothesis that brain mass can explain variation in species' average population density, with large-brained species having greater area requirements, although the relationship may vary across taxonomic groups. Future research is needed to clarify whether the role of brain mass on population density varies as a function of environmental (e.g. environmental stability) and biotic conditions (e.g. level of competition).
(© 2020 British Ecological Society.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies