Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

MEK Inhibition Reverses Aberrant Signaling in Melanoma Cells through Reorganization of NRas and BRAF in Self Nanoclusters.

Tytuł:
MEK Inhibition Reverses Aberrant Signaling in Melanoma Cells through Reorganization of NRas and BRAF in Self Nanoclusters.
Autorzy:
Yakovian O; Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
Sajman J; Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
Arafeh R; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Neve-Oz Y; Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
Alon M; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Samuels Y; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Sherman E; Racah Institute of Physics, The Hebrew University, Jerusalem, Israel. .
Źródło:
Cancer research [Cancer Res] 2021 Mar 01; Vol. 81 (5), pp. 1279-1292. Date of Electronic Publication: 2020 Dec 21.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Baltimore, Md. : American Association for Cancer Research
Original Publication: Chicago [etc.]
MeSH Terms:
GTP Phosphohydrolases/*metabolism
Melanoma/*drug therapy
Melanoma/*metabolism
Membrane Proteins/*metabolism
Proto-Oncogene Proteins B-raf/*metabolism
Skin Neoplasms/*drug therapy
Skin Neoplasms/*metabolism
Cell Line, Tumor ; Cell Membrane/drug effects ; Cell Membrane/metabolism ; Epidermal Growth Factor/pharmacology ; Extracellular Signal-Regulated MAP Kinases/metabolism ; GTP Phosphohydrolases/genetics ; Humans ; MAP Kinase Kinase 1/antagonists & inhibitors ; MAP Kinase Kinase 1/metabolism ; Membrane Proteins/genetics ; Mutation ; Protein Kinase Inhibitors/pharmacology ; Proto-Oncogene Proteins B-raf/genetics ; Pyridones/pharmacology ; Pyrimidinones/pharmacology ; Signal Transduction/drug effects ; Single Molecule Imaging ; Melanoma, Cutaneous Malignant
References:
Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol. 2012;4:a011254.
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 2010;661:3–38.
Plowman SJ, Muncke C, Parton RG, Hancock JF. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci U S A. 2005;102:15500–5.
Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 2003;4:373–84.
Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated ras isoforms. Science. 2005;307:1746–52.
Nan X, Collisson EA, Lewis S, Huang J, Tamguney TM, Liphardt JT, et al. Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc Natl Acad Sci U S A. 2013;110:18519–24.
De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012;16:S17–27.
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.
Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.
Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.
Nazarian R, Shi HB, Wang Q, Kong XJ, Koya RC, Lee H, et al. Melanomas acquire resistance toB-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.
Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res. 2008;14:342–6.
Philips MR, Der CJ. Seeing is believing: Ras dimers observed in live cells. Proc Natl Acad Sci U S A. 2015;112:9793–4.
Arafeh R, Qutob N, Emmanuel R, Keren-Paz A, Madore J, Elkahloun A, et al. Recurrent inactivating RASA2 mutations in melanoma. Nat Genet. 2015;47:1408–10.
Alon M, Arafeh R, Sang Lee J, Madan S, Kalaora S, Nagler A, et al. CAPN1 is a novel binding partner and regulator of the tumor suppressor NF1 in melanoma. Oncotarget. 2018;9:31264–77.
Katzen F. Gateway (R) recombinational cloning: a biological operating system. Expert Opin Drug Discov. 2007;2:571–89.
Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods. 2011;8:1027–36.
Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity. 2011;35:705–20.
Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–90.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.
Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A. Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods. 2011;8:527–8.
Puchner EM, Walter JM, Kasper R, Huang B, Lim WA. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci U S A. 2013;110:16015–20.
Durisic N, Laparra-Cuervo L, Sandoval-Alvarez A, Borbely JS, Lakadamyali M. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods. 2014;11:156–62.
Sander J, Ester M, Kriegel HP, Xu X. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery. 1998;2:169–94.
Wiegand T, Moloney KA. Rings, circles, and null-models for point pattern analysis in ecology. Oikos. 2004;104:209–29.
Sherman E, Barr VA, Samelson LE. Resolving multi-molecular protein interactions by photoactivated localization microscopy. Methods. 2013;59:261–9.
Yakovian O, Schwarzer R, Sajman J, Neve-Oz Y, Razvag Y, Herrmann A, et al. Gp41 dynamically interacts with the TCR in the immune synapse and promotes early T cell activation. Sci Rep. 2018;8:9747.
Peacock JA. Two-dimensional goodness-of-fit testing in astronomy. Mon Not R Astr Soc. 1983;202:615–27.
Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods. 2009;6:153–9.
Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002;297:1873–7.
Sherman E, Barr VA, Merrill RK, Regan CK, Sommers CL, Samelson LE. Hierarchical nanostructure and synergy of multimolecular signalling complexes. Nat Commun. 2016;7:12161.
Olson MF, Marais R. Ras protein signalling. Semin Immunol. 2000;12:63–73.
Endesfelder U, Heilemann M. Direct stochastic optical reconstruction microscopy (dSTORM). Methods Mol Biol. 2015;1251:263–76.
Akinleye A, Furqan M, Mukhi N, Ravella P, Liu DL. MEK and the inhibitors: from bench to bedside. J Hematol Oncol. 2013;6:27.
Sherman E, Barr V, Samelson LE. Super-resolution characterization of TCR-dependent signaling clusters. Immunol Rev. 2013;251:21–35.
Zhou Y, Hancock JF. Ras nanoclusters: versatile lipid-based signaling platforms. Biochim Biophys Acta. 2015;1853:841–9.
Hancock JF, Prior IA. Electron microscopic imaging of Ras signaling domains. Methods. 2005;37:165–72.
Griffiths G, Lucocq JM. Antibodies for immunolabeling by light and electron microscopy: not for the faint hearted. Histochem Cell Biol. 2014;142:347–60.
Leung YH, Guo MY, Ma APY, Ng AMC, Djurisic AB, Degger N, et al. Transmission electron microscopy artifacts in characterization of the nanomaterial-cell interactions. Appl Microbiol Biotechnol. 2017;101:5469–79.
Nan XL, Tamgueney TM, Collisson EA, Lin LJ, Pitt C, Galeas J, et al. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996–8001.
Chen M, Peters A, Huang T, Nan XL. Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target. Mini Rev Med Chem. 2016;16:391–403.
Freeman AK, Ritt DA, Morrison DK. The importance of Raf dimerization in cell signaling. Small GTPases. 2013;4:180–5.
van Lengerich B, Agnew C, Puchner EM, Huang B, Jura N. EGF and NRG induce phosphorylation of HER3/ERBB3 by EGFR using distinct oligomeric mechanisms. Proc Natl Acad Sci U S A. 2017;114:E2836–E45.
Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu JX, Naraev B, et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107.
Merlino G, Herlyn M, Fisher DE, Bastian BC, Flaherty KT, Davies MA, et al. The state of melanoma: challenges and opportunities. Pigment Cell Melanoma Res. 2016;29:404–16.
Boespflug A, Caramel J, Dalle S, Thomas L. Treatment of NRAS-mutated advanced or metastatic melanoma: rationale, current trials and evidence to date. Ther Adv Med Oncol. 2017;9:481–92.
Substance Nomenclature:
0 (Membrane Proteins)
0 (Protein Kinase Inhibitors)
0 (Pyridones)
0 (Pyrimidinones)
33E86K87QN (trametinib)
62229-50-9 (Epidermal Growth Factor)
EC 2.7.11.1 (BRAF protein, human)
EC 2.7.11.1 (Proto-Oncogene Proteins B-raf)
EC 2.7.11.24 (Extracellular Signal-Regulated MAP Kinases)
EC 2.7.12.2 (MAP Kinase Kinase 1)
EC 3.6.1.- (GTP Phosphohydrolases)
EC 3.6.1.- (NRAS protein, human)
Entry Date(s):
Date Created: 20201223 Date Completed: 20210520 Latest Revision: 20231213
Update Code:
20240105
DOI:
10.1158/0008-5472.CAN-20-1205
PMID:
33355187
Czasopismo naukowe
Hotspot mutations of the oncogenes BRAF and NRas are the most common genetic alterations in cutaneous melanoma. Still, the nanoscale organization and signal coupling of these proteins remain incompletely understood, particularly upon expression of oncogenic NRas mutants. Here we employed single-molecule localization microscopy to study the nanoscale organization of NRas and BRAF at the plasma membrane (PM) of melanoma cells. NRas and BRAF resided in self-clusters that did not associate well in resting cells. In EGF-activated cells, NRas clusters became more diffused while overall protein levels at the PM increased; thus allowing enhanced association of NRas and BRAF and downstream signaling. In multiple melanoma cell lines, mutant NRas resided in more pronounced self-clusters relative to wild-type (WT) NRas yet associated more with the clustered and more abundant BRAF. In cells resistant to trametinib, a clinical MEK inhibitor (MEKi), a similar coclustering of NRas and BRAF was observed upon EGF activation. Strikingly, treatment of cells expressing mutant NRas with trametinib reversed the effect of mutant NRas expression by restoring the nonoverlapping self-clusters of NRas and BRAF and by reducing their PM levels and elevated pERK levels caused by mutant NRas. Our results indicate a new mechanism for signal regulation of NRas in melanoma through its nanoscale dynamic organization and a new mechanism for MEKi function in melanoma cells carrying NRas mutations but lacking MEK mutations. SIGNIFICANCE: Nanoscale dynamic organization of WT and mutant NRas relative to BRAF serves as a regulatory mechanism for NRas signaling and may be a viable therapeutic target for its sensitivity to MEKi.
(©2020 American Association for Cancer Research.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies