Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Convergent evolution of diverse Bacillus anthracis outbreak strains toward altered surface oligosaccharides that modulate anthrax pathogenesis.

Tytuł:
Convergent evolution of diverse Bacillus anthracis outbreak strains toward altered surface oligosaccharides that modulate anthrax pathogenesis.
Autorzy:
Norris MH; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America.; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Kirpich A; Department of Population Health Services, Georgia State University, Atlanta, Georgia, United States of America.
Bluhm AP; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America.; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Zincke D; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America.; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Hadfield T; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America.; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Ponciano JM; Department of Biology, University of Florida, Gainesville, Florida, United States of America.
Blackburn JK; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America.; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Źródło:
PLoS biology [PLoS Biol] 2020 Dec 28; Vol. 18 (12), pp. e3001052. Date of Electronic Publication: 2020 Dec 28 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, [2003]-
MeSH Terms:
Amino Sugars/*genetics
Bacillus anthracis/*genetics
Bacillus anthracis/*metabolism
Deoxyglucose/*analogs & derivatives
Amino Sugars/immunology ; Amino Sugars/metabolism ; Animals ; Anthrax/genetics ; Anthrax/immunology ; Anthrax/metabolism ; Bacillus anthracis/pathogenicity ; Biological Evolution ; Deoxyglucose/genetics ; Deoxyglucose/immunology ; Deoxyglucose/metabolism ; Disease Models, Animal ; Disease Outbreaks ; Evolution, Molecular ; Female ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Inbred A ; Moths/microbiology ; Oligosaccharides/genetics ; Oligosaccharides/immunology ; Oligosaccharides/metabolism ; Spores, Bacterial/genetics ; Spores, Bacterial/immunology ; Spores, Bacterial/metabolism
References:
J Bacteriol. 2011 Jul;193(14):3506-11. (PMID: 21571994)
J Biol Chem. 2004 Jul 23;279(30):30945-53. (PMID: 15152001)
Front Microbiol. 2015 Oct 09;6:1122. (PMID: 26500645)
J Comput Biol. 2012 May;19(5):455-77. (PMID: 22506599)
Bull Math Biol. 2006 Apr;68(3):511-24. (PMID: 16794943)
BMC Microbiol. 2006 Apr 06;6:33. (PMID: 16600037)
Emerg Infect Dis. 2014 Feb;20(2):322-3. (PMID: 24447525)
J Infect Dis. 1965 Feb;115:59-67. (PMID: 14258478)
Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
Appl Environ Microbiol. 2006 May;72(5):3746-9. (PMID: 16672527)
Infect Immun. 2008 Sep;76(9):3975-83. (PMID: 18625737)
J Bacteriol. 2004 Jan;186(1):164-78. (PMID: 14679236)
Clin Vaccine Immunol. 2009 Dec;16(12):1728-37. (PMID: 19793896)
Vector Borne Zoonotic Dis. 2014 Aug;14(8):615-7. (PMID: 25072993)
Am J Trop Med Hyg. 2018 Oct;99(4):833-839. (PMID: 30105965)
J Wildl Dis. 2013 Jul;49(3):699-703. (PMID: 23778625)
J Immunol. 2007 Jun 15;178(12):7994-8001. (PMID: 17548636)
Infect Immun. 1986 Mar;51(3):795-800. (PMID: 3081444)
J Biol Dyn. 2012;6:590-611. (PMID: 22873607)
Euro Surveill. 2010 Jan 14;15(2):. (PMID: 20085694)
PLoS One. 2015 Dec 01;10(12):e0142758. (PMID: 26624016)
Appl Environ Microbiol. 2011 Jul;77(14):4905-11. (PMID: 21622795)
J Med Microbiol. 2009 Jun;58(Pt 6):816-825. (PMID: 19429760)
J Bacteriol. 2008 Apr;190(7):2350-9. (PMID: 18245286)
BMC Microbiol. 2020 Jan 7;20(1):6. (PMID: 31910798)
Microb Pathog. 2010 Jul-Aug;49(1-2):38-46. (PMID: 20188814)
J Clin Microbiol. 2006 Sep;44(9):3422-5. (PMID: 16954291)
Infect Immun. 2002 Feb;70(2):661-4. (PMID: 11796596)
Antimicrob Agents Chemother. 2007 Jan;51(1):215-22. (PMID: 17074794)
PLoS Negl Trop Dis. 2015 Aug 20;9(8):e0003931. (PMID: 26291625)
Appl Environ Microbiol. 2010 Nov;76(22):7635-40. (PMID: 20851961)
Infect Dis Model. 2017 Mar 11;2(2):128-142. (PMID: 29928733)
Biofouling. 2011 Aug;27(7):751-61. (PMID: 21777114)
Virulence. 2018 Jan 1;9(1):287-293. (PMID: 28272976)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4273-4280. (PMID: 32054783)
Elife. 2018 Jan 16;7:. (PMID: 29336306)
Infect Immun. 2006 Jan;74(1):469-80. (PMID: 16369003)
Nature. 1981 Nov 19;294(5838):254-5. (PMID: 6795509)
J Wildl Dis. 2010 Jul;46(3):918-22. (PMID: 20688697)
PLoS Pathog. 2005 Nov;1(3):e23. (PMID: 16292357)
Infect Immun. 2007 Dec;75(12):5726-34. (PMID: 17923523)
Vaccine. 2001 Apr 30;19(23-24):3241-7. (PMID: 11312020)
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8709-12. (PMID: 18562275)
Front Cell Infect Microbiol. 2019 Oct 18;9:360. (PMID: 31681636)
Infect Immun. 2015 Oct;83(10):3847-56. (PMID: 26195551)
J Clin Microbiol. 2000 Oct;38(10):3780-4. (PMID: 11015402)
J Immunol. 2006 May 15;176(10):6076-84. (PMID: 16670316)
J Immunol. 1955 Aug;75(2):129-33. (PMID: 13242812)
J Math Biol. 2014 Jan;68(1-2):109-43. (PMID: 23179131)
Am J Trop Med Hyg. 2007 Dec;77(6):1103-10. (PMID: 18165531)
Microbiologia. 1997 Jun;13(2):131-48. (PMID: 9253754)
Infect Immun. 2009 Jan;77(1):565; author reply 565-6. (PMID: 19098284)
PLoS Negl Trop Dis. 2017 Oct 13;11(10):e0005885. (PMID: 29028799)
Antimicrob Agents Chemother. 2002 Feb;46(2):511-3. (PMID: 11796364)
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259. (PMID: 30931475)
Ecology. 2017 Feb;98(2):534-544. (PMID: 27870010)
Colloids Surf B Biointerfaces. 2010 Apr 1;76(2):512-8. (PMID: 20074921)
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1261-6. (PMID: 18216258)
Appl Environ Microbiol. 1994 Nov;60(11):4167-71. (PMID: 16349444)
Front Ecol Evol. 2019 Nov;7:. (PMID: 33796541)
Infect Immun. 1986 May;52(2):509-12. (PMID: 3084385)
Molecules. 2018 Aug 20;23(8):. (PMID: 30127242)
J Infect Dis. 2020 Feb 3;221(4):660-667. (PMID: 31574153)
Infect Immun. 2007 Sep;75(9):4498-505. (PMID: 17606596)
Front Cell Infect Microbiol. 2018 Jan 22;8:2. (PMID: 29404280)
Nat Biotechnol. 2011 Jan;29(1):24-6. (PMID: 21221095)
Vaccine. 2017 Nov 1;35(46):6283-6289. (PMID: 28988866)
Front Ecol Evol. 2019;7:. (PMID: 34295904)
Infect Genet Evol. 2004 Sep;4(3):205-13. (PMID: 15450200)
Infect Immun. 2012 May;80(5):1626-33. (PMID: 22354031)
Emerg Infect Dis. 2012 Aug;18(8):1307-13. (PMID: 22840345)
Infect Immun. 2007 Nov;75(11):5233-9. (PMID: 17709408)
Infect Immun. 2007 Oct;75(10):4754-61. (PMID: 17635863)
Methods Enzymol. 1994;230:1-15. (PMID: 8139491)
Appl Environ Microbiol. 2009 Oct;75(20):6496-503. (PMID: 19700544)
Nat Microbiol. 2019 Aug;4(8):1337-1343. (PMID: 31086311)
PLoS Pathog. 2007 Jun;3(6):e76. (PMID: 17542645)
PLoS Negl Trop Dis. 2014 Jul 17;8(7):e2985. (PMID: 25032701)
Nature. 1983 May 19-25;303(5914):239-40. (PMID: 6405284)
PLoS One. 2007 May 23;2(5):e461. (PMID: 17520020)
Infect Immun. 2009 May;77(5):2036-42. (PMID: 19273556)
PLoS One. 2009 Aug 12;4(8):e6532. (PMID: 19672290)
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13957-62. (PMID: 19666536)
J Wildl Dis. 2014 Apr;50(2):393-6. (PMID: 24484485)
J Appl Microbiol. 1999 Aug;87(2):189-91. (PMID: 10475945)
J Bacteriol. 2010 Oct;192(19):5053-62. (PMID: 20675481)
J Infect Dis. 2013 Feb 1;207(3):450-7. (PMID: 23148288)
Grant Information:
R01 GM117617 United States GM NIGMS NIH HHS
Substance Nomenclature:
0 (4,6-dideoxy-4-(3-hydroxy-3-methylbutanamido)-2-O-methylglucopyranose)
0 (Amino Sugars)
0 (Membrane Glycoproteins)
0 (Oligosaccharides)
9G2MP84A8W (Deoxyglucose)
Entry Date(s):
Date Created: 20201228 Date Completed: 20210201 Latest Revision: 20240330
Update Code:
20240330
PubMed Central ID:
PMC7793302
DOI:
10.1371/journal.pbio.3001052
PMID:
33370274
Czasopismo naukowe
Bacillus anthracis, a spore-forming gram-positive bacterium, causes anthrax. The external surface of the exosporium is coated with glycosylated proteins. The sugar additions are capped with the unique monosaccharide anthrose. The West African Group (WAG) B. anthracis have mutations rendering them anthrose deficient. Through genome sequencing, we identified 2 different large chromosomal deletions within the anthrose biosynthetic operon of B. anthracis strains from Chile and Poland. In silico analysis identified an anthrose-deficient strain in the anthrax outbreak among European heroin users. Anthrose-deficient strains are no longer restricted to West Africa so the role of anthrose in physiology and pathogenesis was investigated in B. anthracis Sterne. Loss of anthrose delayed spore germination and enhanced sporulation. Spores without anthrose were phagocytized at higher rates than spores with anthrose, indicating that anthrose may serve an antiphagocytic function on the spore surface. The anthrose mutant had half the LD50 and decreased time to death (TTD) of wild type and complement B. anthracis Sterne in the A/J mouse model. Following infection, anthrose mutant bacteria were more abundant in the spleen, indicating enhanced dissemination of Sterne anthrose mutant. At low sample sizes in the A/J mouse model, the mortality of ΔantC-infected mice challenged by intranasal or subcutaneous routes was 20% greater than wild type. Competitive index (CI) studies indicated that spores without anthrose disseminated to organs more extensively than a complemented mutant. Death process modeling using mouse mortality dynamics suggested that larger sample sizes would lead to significantly higher deaths in anthrose-negative infected animals. The model was tested by infecting Galleria mellonella with spores and confirmed the anthrose mutant was significantly more lethal. Vaccination studies in the A/J mouse model showed that the human vaccine protected against high-dose challenges of the nonencapsulated Sterne-based anthrose mutant. This work begins to identify the physiologic and pathogenic consequences of convergent anthrose mutations in B. anthracis.
Competing Interests: The authors have declared that no competing interests exist.
Erratum in: PLoS Biol. 2021 Feb 8;19(2):e3001112. (PMID: 33556066)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies