Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro.

Tytuł:
A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro.
Autorzy:
Zhang H; Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Yang Y; Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
Li J; Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University City of Shenzhen, Shenzhen, China.
Wang M; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Saravanan KM; Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Wei J; Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
Tze-Yang Ng J; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
Tofazzal Hossain M; Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.; University of Chinese Academy of Sciences, Shijingshan District, Beijing, China.
Liu M; Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University City of Shenzhen, Shenzhen, China.
Zhang H; Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Ren X; Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
Pan Y; Department of Computer Science, Georgia State University, Atlanta, Georgia, United States of America.
Peng Y; Department of Pathology, School of Medicine, Shenzhen University, Shenzhen, China.
Shi Y; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Wan X; Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, University City of Shenzhen, Shenzhen, China.
Liu Y; Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
Wei Y; Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Źródło:
PLoS computational biology [PLoS Comput Biol] 2020 Dec 31; Vol. 16 (12), pp. e1008489. Date of Electronic Publication: 2020 Dec 31 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
MeSH Terms:
Drug Repositioning*
Aminopterin/*analogs & derivatives
Antiviral Agents/*pharmacology
Drug Evaluation, Preclinical/*methods
RNA-Dependent RNA Polymerase/*antagonists & inhibitors
SARS-CoV-2/*physiology
Aminopterin/chemistry ; Aminopterin/pharmacology ; Animals ; Azithromycin/chemistry ; Azithromycin/pharmacology ; Chlorocebus aethiops ; Computer Simulation ; Deep Learning ; Molecular Dynamics Simulation ; RNA-Dependent RNA Polymerase/chemistry ; Vero Cells ; Virus Replication/drug effects ; COVID-19 Drug Treatment
References:
Expert Opin Drug Metab Toxicol. 2011 Sep;7(9):1141-52. (PMID: 21726160)
Methods. 2019 Aug 15;166:57-65. (PMID: 30910562)
BMC Bioinformatics. 2008 Jan 23;9:40. (PMID: 18215316)
J Chem Inf Model. 2017 May 22;57(5):1210-1217. (PMID: 28453271)
Expert Opin Biol Ther. 2019 Mar;19(3):197-209. (PMID: 30658046)
BMC Res Notes. 2012 Jul 23;5:367. (PMID: 22824207)
J Chem Inf Model. 2018 Jan 22;58(1):27-35. (PMID: 29268609)
Antiviral Res. 2020 Jun;178:104787. (PMID: 32251768)
Proteins. 2003 Jun 1;51(4):577-90. (PMID: 12784217)
Virol Sin. 2017 Jun;32(3):199-206. (PMID: 28530022)
J Comput Chem. 2005 Dec;26(16):1701-18. (PMID: 16211538)
J Pharmacol Pharmacother. 2014 Oct;5(4):278-84. (PMID: 25422576)
J Chem Theory Comput. 2008 Mar;4(3):435-47. (PMID: 26620784)
Acta Pharm Sin B. 2020 May;10(5):766-788. (PMID: 32292689)
Antiviral Res. 2020 Jun;178:104786. (PMID: 32251767)
J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
Protein Cell. 2013 Dec;4(12):951-61. (PMID: 24318862)
J Comput Chem. 2004 Oct;25(13):1605-12. (PMID: 15264254)
Cancer. 2008 Oct 15;113(8):2090-6. (PMID: 18756533)
Cell Res. 2020 Mar;30(3):269-271. (PMID: 32020029)
J Comput Chem. 2009 Dec;30(16):2785-91. (PMID: 19399780)
Bioorg Med Chem Lett. 2008 Feb 15;18(4):1413-8. (PMID: 18242088)
Bioinformatics. 2015 Feb 1;31(3):405-12. (PMID: 25301850)
Mol Inform. 2021 Jan;40(1):e2000115. (PMID: 32722864)
J Chem Theory Comput. 2019 Oct 8;15(10):5703-5715. (PMID: 31442033)
Nat Commun. 2019 May 28;10(1):2342. (PMID: 31138817)
Chem Rev. 2005 Feb;105(2):593-620. (PMID: 15700958)
Sci Rep. 2020 Aug 17;10(1):13866. (PMID: 32807895)
PeerJ. 2019 Jul 25;7:e7362. (PMID: 31380152)
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W471-7. (PMID: 22570420)
Cell Discov. 2020 Mar 16;6:14. (PMID: 32194980)
Nat Chem. 2017 Mar;9(3):201-206. (PMID: 28221352)
J Proteome Res. 2020 Nov 6;19(11):4637-4648. (PMID: 32893632)
Gastroenterology. 2020 Sep;159(3):1158-1160.e2. (PMID: 32425226)
Science. 2020 May 15;368(6492):779-782. (PMID: 32277040)
Science. 2020 Jun 26;368(6498):1499-1504. (PMID: 32358203)
BJGP Open. 2020 Jun 23;4(2):. (PMID: 32398343)
N Engl J Med. 2020 Jun 11;382(24):2327-2336. (PMID: 32275812)
J Mol Graph Model. 2006 Oct;25(2):247-60. (PMID: 16458552)
Sci Rep. 2015 Dec 03;5:17554. (PMID: 26631542)
J Infect Public Health. 2020 Sep;13(9):1210-1223. (PMID: 32561274)
Int J Antimicrob Agents. 2020 Jul;56(1):105949. (PMID: 32205204)
Nature. 2020 Mar;579(7798):265-269. (PMID: 32015508)
Substance Nomenclature:
0 (10-propargyl-10-deazaaminopterin)
0 (Antiviral Agents)
83905-01-5 (Azithromycin)
EC 2.7.7.48 (RNA-Dependent RNA Polymerase)
JYB41CTM2Q (Aminopterin)
Entry Date(s):
Date Created: 20201231 Date Completed: 20210108 Latest Revision: 20221207
Update Code:
20240105
PubMed Central ID:
PMC7774833
DOI:
10.1371/journal.pcbi.1008489
PMID:
33382685
Czasopismo naukowe
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus poses serious threats to the global public health and leads to worldwide crisis. No effective drug or vaccine is readily available. The viral RNA-dependent RNA polymerase (RdRp) is a promising therapeutic target. A hybrid drug screening procedure was proposed and applied to identify potential drug candidates targeting RdRp from 1906 approved drugs. Among the four selected market available drug candidates, Pralatrexate and Azithromycin were confirmed to effectively inhibit SARS-CoV-2 replication in vitro with EC50 values of 0.008μM and 9.453 μM, respectively. For the first time, our study discovered that Pralatrexate is able to potently inhibit SARS-CoV-2 replication with a stronger inhibitory activity than Remdesivir within the same experimental conditions. The paper demonstrates the feasibility of fast and accurate anti-viral drug screening for inhibitors of SARS-CoV-2 and provides potential therapeutic agents against COVID-19.
Competing Interests: NO authors have competing interests
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies