Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of Half-Life Extension of Peptides via Serum Albumin Binding: Current Challenges.

Tytuł:
Prediction of Half-Life Extension of Peptides via Serum Albumin Binding: Current Challenges.
Autorzy:
Hijazi Y; R&D, Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Bldg. H 831, C 0442, 65926, Frankfurt, Germany. .
Źródło:
European journal of drug metabolism and pharmacokinetics [Eur J Drug Metab Pharmacokinet] 2021 Mar; Vol. 46 (2), pp. 163-172. Date of Electronic Publication: 2021 Jan 01.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2010- >: Paris : Springer France
Original Publication: Paris, Edifor.
MeSH Terms:
Models, Biological*
Serum Albumin/*metabolism
Animals ; Drug Administration Schedule ; Drug Development ; Half-Life ; Humans ; Peptides/pharmacokinetics
References:
Vugmeyster Y, Xu X, Theil FP, et al. Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem. 2012;3(4):73–92. (PMID: 10.4331/wjbc.v3.i4.73)
Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68. (PMID: 10.1002/jps.20178)
Saini SD, Schoenfeld P, Kaulback K, Bubinsky MC. Effect of medication dosing frequency on adherence. Am J Manag Care. 2009;15(6):e22-33. (PMID: 19514806)
Ingersoll KS, Cohen J. The impact of medication regimen factors on adherence to chronic treatment: a review of literature. J Behav Med. 2008;31(3):213–24. (PMID: 10.1007/s10865-007-9147-y)
Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76. (PMID: 10.1016/j.copbio.2011.06.012)
Meibohm B, Zhou H. Characterizing the impact of renal impairement on the clinical pharmacology of biologics. J Clin Pharmacol. 2012;52(1 Suppl):54S-62S. (PMID: 22232754)
Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta. 2013;1830(12):5526–34. (PMID: 10.1016/j.bbagen.2013.04.023)
Mueller D, Karle A, Meissburger B, et al. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem. 2007;282(17):12650–60. (PMID: 10.1074/jbc.M700820200)
Vuignier K, Schappler J, Veuthey JL, et al. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010;398(1):53–66. (PMID: 10.1007/s00216-010-3737-1)
Rowland M, Tozer TN. Clinical pharmacokinetics concepts and application. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 1995.
Strand DS, Kim D, Peura DA. 25 years of proton pump inhibitors: a comprehensive review. Gut Liver. 2017;11(1):27–37. (PMID: 10.5009/gnl15502)
Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58(18):7370–80. (PMID: 10.1021/acs.jmedchem.5b00726)
Granhall C, Donsmark M, Blicher TM, et al. Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. Clin Pharmacokinet. 2019;58(6):781–91. (PMID: 10.1007/s40262-018-0728-4)
Gabrielson J, Weiner D. Pharmacokinetic & pharmacodynamic data analysis. 4th ed. Halmstad: Printografen AB; 2010.
Yanez JA, Remsberg CM, Sayre CL, et al. Flip-flop pharmacokinetics – delivering a reversal of disposition: challenges and opportunities during drug development. Ther Deliv. 2011;2(5):643–72. (PMID: 10.4155/tde.11.19)
Ryberg LA, Sønderby P, Barrientos F, et al. Solution structures of long-acting insulin analogues and their complexes with albumin. Acta Crystallogr D Struct Biol. 2019;75(Pt 3):272–82. (PMID: 10.1107/S2059798318017552)
Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21. (PMID: 10.1067/mcp.2002.121829)
Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–39. (PMID: 10.1038/nrd3287)
Bohnert T, Gan LS. Plasma protein binding: from discovery to development. J Pharm Sci. 2013;102(9):2953–94. (PMID: 10.1002/jps.23614)
Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):135. (PMID: 10.1186/s13075-015-0651-0)
Hopp J, Hornig N, Zettlitz KA, et al. The effects of affinity and valency of an albumin-binding domain (ABD) on the half-life of a single-chain diabody-ABD fusion protein. Protein Eng Des Sel. 2010;23(11):827–34. (PMID: 10.1093/protein/gzq058)
Adams R, Griffin L, Compson JE, et al. Extending the half-life of a fab fragment through generation of a humanized anti-human serum albumin Fv domain: An investigation into the correlation between affinity and serum half-life. MAbs. 2016;8(7):1336–46. (PMID: 10.1080/19420862.2016.1185581)
Wunder A, Mueller-Ladner U, Stelzer EHK, et al. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol. 2003;170(9):4793–801. (PMID: 10.4049/jimmunol.170.9.4793)
Chaudhury C, Mehnaz S, Robinson JM, et al. The major histocompatibility complex–related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197(3):315–22. (PMID: 10.1084/jem.20021829)
Peters T. Serum albumin. Adv Protein Chem. 1985;37:161–245. (PMID: 10.1016/S0065-3233(08)60065-0)
Dixon FJ, Maurer PH, Deichmller MP. Half-lives of homologous serum albumins in several species. Proc Soc Exp Biol Med. 1953;83(2):287–8. (PMID: 10.3181/00379727-83-20336)
Dich J, Nielsen K. Metabolism and distribution of 131 I-labelled albumin in the pig. Can J Comp Med Vet Sci. 1963;27(11):269–73. (PMID: 176494731583716)
Gabrielsson J, Dolgos H, Gillberg PG, et al. Early integration of pharmacokinetic and dynamic reasoning is essential for optimal development of lead compounds: strategic considerations. Rev Drug Discov Today. 2009;14(7–8):358–72. (PMID: 10.1016/j.drudis.2008.12.011)
Battelino T, Rasmussen MH, De Schepper J, et al. Somapacitan, a once-weekly reversible albumin-binding GH derivative, in children with GH deficiency: a randomized dose-escalation trial. Clin Endocrinol. 2017;87:350–8. (PMID: 10.1111/cen.13409)
Sogroya® (somapacitan) BLA # 761156. US Food and Drug Administration, Non-clinical review 2019. Center for drug evaluation and research. Application number 761156Orig1s000. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/761156Orig1s000PharmR.pdf . Accessed 19 Oct 2020.
Zeisel HJ, von Petrykowski W, Wais U. Pharmacokinetics and short-term metabolic effects of mammalian cell-derived biosynthetic human growth hormone in man. Horm Res. 1992;37(Suppl 2):5–13. (PMID: 10.1159/000182369)
Ritschel WA, Vachharajani NN, Johnson RD, et al. The allometric approach for interspecies scaling of pharmacokinetic parameters. Camp Biochem Physiol. 1992;103C(2):249–53.
Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5. (PMID: 10.1023/A:1018943613122)
Nguyen A, Reyes AE, Zhang M, et al. The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng Des Sel. 2006;19(7):291–7. (PMID: 10.1093/protein/gzl011)
Zorzi A, Linciano S, Angelini A. Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. Med Chem Commun. 2019;10:1068–81. (PMID: 10.1039/C9MD00018F)
Ungewiss J, Gericke S, Boriss H. determination of the plasma protein binding of liraglutide using the EScalate* equilibrium shift assay. J Pharm Sci. 2019;108(3):1309–14. (PMID: 10.1016/j.xphs.2018.10.018)
Donner DB. Receptor- and non-receptor-mediated uptake and degradation of insulin by hepatocytes. Biochem J. 1982;208(1):211–9. (PMID: 10.1042/bj2080211)
Mager DE. Target-mediated drug disposition and dynamics. Review Biochem Pharmacol. 2006;72(1):1–10. (PMID: 10.1016/j.bcp.2005.12.041)
Glassman PM, Muzykantov VR. Target-mediated exposure enhancement: a previously unexplored limit of TMDD. J Pharmacokinet Pharmacodyn. 2020;47:411–20. (PMID: 10.1007/s10928-020-09693-1)
Substance Nomenclature:
0 (Peptides)
0 (Serum Albumin)
Entry Date(s):
Date Created: 20210102 Date Completed: 20211101 Latest Revision: 20211101
Update Code:
20240105
DOI:
10.1007/s13318-020-00664-y
PMID:
33386550
Czasopismo naukowe
The development of peptide therapeutics has increased enormously in recent decades. Many of the peptide drugs and antibody fragments that lack Fc backbone have a short half-life in circulation. In general, the half-life supports the design of the dosing regimen and frequency of administration, which are key aspects in the discovery of peptide drugs intended for long duration of action. Less frequent administration such as weekly or monthly can improve compliance and adherence to therapy. Serum albumin binding is a key approach to extend the half-life of peptide drugs. Despite the evidence of half-life prolongation of a variety of peptide drugs via albumin, quantitative prediction for humans is still a key question. Challenges in the measurement of albumin binding and in understanding the clearance mechanisms can limit quantitative prediction. We integrated pharmacokinetic concepts and albumin binding across species in a quantitative model to be used as a tool for prediction of half-life. Preliminary validation on a limited dataset indicated a good correlation between predicted and observed values. Further development of more quantitative models is warranted.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies