Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Toxin-antitoxin HicAB regulates the formation of persister cells responsible for the acid stress resistance in Acetobacter pasteurianus.

Tytuł:
Toxin-antitoxin HicAB regulates the formation of persister cells responsible for the acid stress resistance in Acetobacter pasteurianus.
Autorzy:
Xia K; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
Han C; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.; Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
Xu J; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.; Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
Liang X; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .; Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .
Źródło:
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2021 Jan; Vol. 105 (2), pp. 725-739. Date of Electronic Publication: 2021 Jan 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin ; New York : Springer International, c1984-
MeSH Terms:
Acetobacter*/genetics
Antitoxins*
Acetic Acid ; Fermentation
References:
Andrés-Barrao C, Saad MM, Chappuis M-L, Boffa M, Perret X, Ortega Pérez R, Barja F (2012) Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteome 75:1701–1717. https://doi.org/10.1016/j.jprot.2011.11.027. (PMID: 10.1016/j.jprot.2011.11.027)
Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16. https://doi.org/10.1093/jac/48.suppl_1.5. (PMID: 10.1093/jac/48.suppl_1.511420333)
Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van Melderen L, Zinkernagel A (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17:441–448. https://doi.org/10.1038/s41579-019-0196-3. (PMID: 10.1038/s41579-019-0196-3309800697136161)
Bigger J (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244:497–500. (PMID: 10.1016/S0140-6736(00)74210-3)
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170. (PMID: 10.1093/bioinformatics/btu1702469540424695404)
Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, Titball RW (2014) The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J 459:333–344. https://doi.org/10.1042/BJ20140073. (PMID: 10.1042/BJ20140073245026673969222)
Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K (2016) Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:16051. https://doi.org/10.1038/nmicrobiol.2016.51. (PMID: 10.1038/nmicrobiol.2016.51275726494932909)
Daimon Y, Narita S, Akiyama Y (2015) Activation of toxin-antitoxin system toxins suppresses lethality caused by the loss of sigmaE in Escherichia coli. J Bacteriol 197:2316–2324. https://doi.org/10.1128/JB.00079-15. (PMID: 10.1128/JB.00079-15259179094524175)
De Roos J, De Vuyst L (2018) Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 49:115–119. https://doi.org/10.1016/j.copbio.2017.08.007. (PMID: 10.1016/j.copbio.2017.08.00728863341)
Dewachter L, Fauvart M, Michiels J (2019) Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol Cell 76:255–267. https://doi.org/10.1016/j.molcel.2019.09.028. (PMID: 10.1016/j.molcel.2019.09.02831626749)
Goormaghtigh F, Van Melderen L (2019) Single-cell imaging and characterization of Escherichia coli persister cells to ofloxacin in exponential cultures. Sci Adv 5:eaav9462. https://doi.org/10.1126/sciadv.aav9462. (PMID: 10.1126/sciadv.aav9462312236536584399)
Goormaghtigh F, Fraikin N, Putrins M, Hallaert T, Hauryliuk V, Garcia-Pino A, Sjodin A, Kasvandik S, Udekwu K, Tenson T, Kaldalu N, Van Melderen L (2018) Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. MBio 9:e00640–e00618. https://doi.org/10.1128/mBio.00640-18. (PMID: 10.1128/mBio.00640-18298956346016239)
Harms A, Maisonneuve E, Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354:aaf4268. https://doi.org/10.1126/science.aaf4268. (PMID: 10.1126/science.aaf426827980159)
Harms A, Brodersen DE, Mitarai N, Gerdes K (2018) Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell 70:768–784. https://doi.org/10.1016/j.molcel.2018.01.003. (PMID: 10.1016/j.molcel.2018.01.00329398446)
Kim DH, Kang SM, Park SJ, Jin C, Yoon HJ, Lee BJ (2018a) Functional insights into the Streptococcus pneumoniae HicBA toxin-antitoxin system based on a structural study. Nucleic Acids Res 46:6371–6386. https://doi.org/10.1093/nar/gky469. (PMID: 10.1093/nar/gky469298781526159526)
Kim JS, Chowdhury N, Yamasaki R, Wood TK (2018b) Viable but non-culturable and persistence describe the same bacterial stress state. Environ Microbiol 20:2038–2048. https://doi.org/10.1111/1462-2920.14075. (PMID: 10.1111/1462-2920.1407529457686)
Kint CI, Verstraeten N, Fauvart M, Michiels J (2012) New-found fundamentals of bacterial persistence. Trends Microbiol 20:577–585. https://doi.org/10.1016/j.tim.2012.08.009. (PMID: 10.1016/j.tim.2012.08.00922959615)
Klopfenstein DV, Zhang LS, Pedersen BS, Ramirez F, Vesztrocy AW, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, Dampier W, Dessimoz C, Flick P, Tang HB (2018) GOATOOLS: a Python library for gene ontology analyses. Sci Rep 8:10872. https://doi.org/10.1038/s41598-018-28948-z. (PMID: 10.1038/s41598-018-28948-z300220986052049)
Knudsen GM, Ng Y, Gram L (2013) Survival of bactericidal antibiotic treatment by a persister subpopulation of Listeria monocytogenes. Appl Environ Microbiol 79:7390–7397. https://doi.org/10.1128/AEM.02184-13. (PMID: 10.1128/AEM.02184-13240564603837754)
Krusong W, Yaiyen S, Pornpukdeewatana S (2015) Impact of high initial concentrations of acetic acid and ethanol on acetification rate in an internal Venturi injector bioreactor. J Appl Microbiol 118:629–640. https://doi.org/10.1111/jam.12715. (PMID: 10.1111/jam.1271525492726)
Kwan BW, Valenta JA, Benedik MJ, Wood TK (2013) Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother 57:1468–1473. https://doi.org/10.1128/AAC.02135-12. (PMID: 10.1128/AAC.02135-12232959273591907)
Li Y, Yan P, Lei Q, Li B, Sun Y, Li S, Lei H, Xie N (2019) Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments. J Ind Microbiol Biotechnol 46:1491–1503. https://doi.org/10.1007/s10295-019-02225-y. (PMID: 10.1007/s10295-019-02225-y31512094)
Ma D, Mandell JB, Donegan NP, Cheung AL, Ma W, Rothenberger S, Shanks RMQ, Richardson AR, Urish KL, Boyle JP (2019) The toxin-antitoxin MazEF drives Staphylococcus aureus biofilm formation, antibiotic tolerance, and chronic infection. MBio 1010:e01658–e01619. https://doi.org/10.1128/mBio.01658-19. (PMID: 10.1128/mBio.01658-19)
Makarova KS, Grishin NV, Koonin EV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics 22:2581–2584. https://doi.org/10.1093/bioinformatics/btl418. (PMID: 10.1093/bioinformatics/btl41816895922)
Megaw J, Gilmore BF (2017) Archaeal persisters: persister cell formation as a stress response in Haloferax volcanii. Front Microbiol 8:1589. https://doi.org/10.3389/fmicb.2017.01589. (PMID: 10.3389/fmicb.2017.01589288712475566976)
Mostafa HE, Heller KJ, Geis A (2002) Cloning of Escherichia coli lacZ and lacY genes and their expression in Gluconobacter oxydans and Acetobacter liquefaciens. Appl Environ Microbiol 68:2619–2623. https://doi.org/10.1128/aem.68.5.2619-2623.2002. (PMID: 10.1128/aem.68.5.2619-2623.200211976147127584)
Mullins EA, Francois JA, Kappock TJ (2008) A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol 190:4933–4940. https://doi.org/10.1128/JB.00405-08. (PMID: 10.1128/JB.00405-08185028562447011)
Nakano S, Fukaya M, Horinouchi S (2006) Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Appl Environ Microbiol 72:497–505. https://doi.org/10.1128/AEM.72.1.497-505.2006. (PMID: 10.1128/AEM.72.1.497-505.2006163910841352267)
Obranic S, Babic F, Maravic-Vlahovicek G (2013) Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors. Plasmid 70:263–267. https://doi.org/10.1016/j.plasmid.2013.04.001. (PMID: 10.1016/j.plasmid.2013.04.00123583732)
Quistgaard EM, Low C, Guettou F, Nordlund P (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 17:123–132. https://doi.org/10.1038/nrm.2015.25. (PMID: 10.1038/nrm.2015.2526758938)
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616. (PMID: 10.1093/bioinformatics/btp6161991030819910308)
Shafiei R, Zarmehrkhorshid R, Mounir M, Thonart P, Delvigne F (2017) Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation. Bioprocess Biosyst Eng 40:769–780. https://doi.org/10.1007/s00449-017-1742-x. (PMID: 10.1007/s00449-017-1742-x28204982)
Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP, Lewis K (2017) ATP-dependent persister formation in Escherichia coli. MBio 8:e02267–e02216. https://doi.org/10.1128/mBio.02267-16. (PMID: 10.1128/mBio.02267-16281743135296605)
Tjaden B (2015) De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol 16:1. https://doi.org/10.1186/s13059-014-0572-2. (PMID: 10.1186/s13059-014-0572-2255834484316799)
Trcek J (2015) Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. Ann Microbiol 65:1287–1292. https://doi.org/10.1007/s13213-014-0966-0. (PMID: 10.1007/s13213-014-0966-0)
Trcek J, Mira NP, Jarboe LR (2015) Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol 99:6215–6229. https://doi.org/10.1007/s00253-015-6762-3. (PMID: 10.1007/s00253-015-6762-326142387)
Ueno H, Kato Y, Tabata KV, Noji H (2019) Revealing the metabolic activity of persisters in Mycobacteria by single-cell D 2 O raman imaging spectroscopy. Anal Chem 91:15171–15178. https://doi.org/10.1021/acs.analchem.9b03960. (PMID: 10.1021/acs.analchem.9b0396031687804)
Van den Bergh B, Fauvart M, Michiels J (2017) Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 41:219–251. https://doi.org/10.1093/femsre/fux001. (PMID: 10.1093/femsre/fux00128333307)
Wang Z, Zang N, Shi J, Feng W, Liu Y, Liang X (2015) Comparative proteome of Acetobacter pasteurianus Ab3 during the high acidity rice vinegar fermentation. Appl Biochem Biotechnol 177:1573–1588. https://doi.org/10.1007/s12010-015-1838-1. (PMID: 10.1007/s12010-015-1838-126369782)
Wang SC, Davejan P, Hendargo KJ, Javadi-Razaz I, Chou A, Yee DC, Ghazi F, Lam KJK, Conn AM, Madrigal A, Medrano-Soto A, Saier MH Jr (2020) Expansion of the major facilitator superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. Biochim Biophys Acta Biomembr 1862:183277. https://doi.org/10.1016/j.bbamem.2020.183277. (PMID: 10.1016/j.bbamem.2020.18327732205149)
Willenborg J, Willms D, Bertram R, Goethe R, Valentin-Weigand P (2014) Characterization of multi-drug tolerant persister cells in Streptococcus suis. BMC Microbiol 14:120. https://doi.org/10.1186/1471-2180-14-120. (PMID: 10.1186/1471-2180-14-120248853894040513)
Xia K, Zang N, Zhang J, Zhang H, Li Y, Liu Y, Feng W, Liang X (2016) New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol 238:241–251. https://doi.org/10.1016/j.ijfoodmicro.2016.09.016. (PMID: 10.1016/j.ijfoodmicro.2016.09.01627681379)
Xia K, Bao H, Zhang F, Linhardt RJ, Liang X (2019) Characterization and comparative analysis of toxin-antitoxin systems in Acetobacter pasteurianus. J Ind Microbiol Biotechnol 46:869–882. https://doi.org/10.1007/s10295-019-02144-y. (PMID: 10.1007/s10295-019-02144-y30805740)
Xie C, Mao XZ, Huang JJ, Ding Y, Wu JM, Dong S, Kong L, Gao G, Li CY, Wei LP (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322. https://doi.org/10.1093/nar/gkr483. (PMID: 10.1093/nar/gkr483217153863125809)
Yagnik D, Serafin V, Shah AJ (2018) Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Sci Rep 8:1732. https://doi.org/10.1038/s41598-017-18618-x. (PMID: 10.1038/s41598-017-18618-x293790125788933)
Yang H, Yu Y, Fu C, Chen F (2019) Bacterial acid resistance toward organic weak acid revealed by RNA-Seq transcriptomic analysis in Acetobacter pasteurianus. Front Microbiol 10:1616. https://doi.org/10.3389/fmicb.2019.01616. (PMID: 10.3389/fmicb.2019.01616314477896691051)
Yin H, Zhang R, Xia M, Bai X, Mou J, Zheng Y, Wang M (2017) Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb Cell Factories 16:109. https://doi.org/10.1186/s12934-017-0717-6. (PMID: 10.1186/s12934-017-0717-6)
Zarmehrkhorshid R, Shafiei R, Delvigne F (2019) Modified semi-continuous fermentation for resuscitating non-growing cells during high-temperature gluconic acid production by Acetobacter senegalensis. J Appl Microbiol 127:1101–1112. https://doi.org/10.1111/jam.14371. (PMID: 10.1111/jam.1437131283860)
Zheng Y, Zhang R, Yin H, Bai X, Chang Y, Xia M, Wang M (2017) Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions. Appl Microbiol Biotechnol 101:7007–7016. https://doi.org/10.1007/s00253-017-8453-8. (PMID: 10.1007/s00253-017-8453-828770302)
Zheng Y, Wang J, Bai X, Chang Y, Mou J, Song J, Wang M (2018) Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA. Appl Microbiol Biotechnol 102:6493–6502. https://doi.org/10.1007/s00253-018-9066-6. (PMID: 10.1007/s00253-018-9066-629785501)
Grant Information:
LY19C200002 Natural Science Foundation of Zhejiang Province
Contributed Indexing:
Keywords: Acetic acid resistance; Acetobacter pasteurianus; HicAB; Persister formation; Transcriptome
Substance Nomenclature:
0 (Antitoxins)
Q40Q9N063P (Acetic Acid)
SCR Organism:
Acetobacter pasteurianus
Entry Date(s):
Date Created: 20210102 Date Completed: 20210514 Latest Revision: 20210514
Update Code:
20240105
DOI:
10.1007/s00253-020-11078-w
PMID:
33386897
Czasopismo naukowe
Elucidation of the acetic acid resistance (AAR) mechanisms is of great significance to the development of industrial microbial species, specifically to the acetic acid bacteria (AAB) in vinegar industry. Currently, the role of population heterogeneity in the AAR of AAB is still unclear. In this study, we investigated the persister formation in AAB and the physiological role of HicAB in Acetobacter pasteurianus Ab3. We found that AAB were able to produce a high level of persister cells (10 -2 to 10 0 in frequency) in the exponential-phase cultures. Initial addition of acetic acid and ethanol reduced the ratio of persister cells in A. pasteurianus by promoting the intracellular ATP level. Further, we demonstrated that HicAB was an important regulator of AAR in A. pasteurianus Ab3. Strains lacking hicAB showed a decreased survival under acetic acid exposure. Deletion of hicAB significantly diminished the acetic acid production, acetification rate, and persister formation in A. pasteurianus Ab3, underscoring the correlation between hicAB, persister formation, and acid stress resistance. By transcriptomic analysis (RNA-seq), we revealed that HicAB contributed to the survival of A. pasteurianus Ab3 under high acid stress by upregulating the expression of genes involved in the acetic acid over-oxidation and transport, 2-methylcitrate cycle, and oxidative phosphorylation. Collectively, the results of this study refresh our current understanding of the AAR mechanisms in A. pasteurianus, which may facilitate the development of novel ways for improving its industrial performance and direct the scaled-up vinegar production. KEY POINTS: • AAB strains form persister cells with different frequencies. • A. pasteurianus are able to form acid-tolerant persister cells. • HicAB contributes to the AAR and persister formation in A. pasteurianus Ab3.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies