Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Thermoplasmata and Nitrososphaeria as dominant archaeal members in acid mine drainage sediment of Malanjkhand Copper Project, India.

Tytuł:
Thermoplasmata and Nitrososphaeria as dominant archaeal members in acid mine drainage sediment of Malanjkhand Copper Project, India.
Autorzy:
Gupta A; Environmental Microbiology and Genomics Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
Saha A; Environmental Microbiology and Genomics Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
Sar P; Environmental Microbiology and Genomics Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India. .
Źródło:
Archives of microbiology [Arch Microbiol] 2021 May; Vol. 203 (4), pp. 1833-1841. Date of Electronic Publication: 2021 Jan 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer-Verlag.
MeSH Terms:
Ammonia/*metabolism
Euryarchaeota/*metabolism
Geologic Sediments/*microbiology
Wastewater/*chemistry
Wastewater/*microbiology
Archaea/classification ; Copper/analysis ; DNA, Archaeal/genetics ; Ecosystem ; Euryarchaeota/classification ; Euryarchaeota/genetics ; India ; Metals, Heavy/analysis ; Mining ; Oxidation-Reduction ; Phylogeny ; RNA, Ribosomal, 16S/genetics
References:
Amaral-Zettler LA, Zettler ER, Theroux SM, Palacios C, Aguilera A, Amils R (2011) Microbial community structure across the tree of life in the extreme Rio Tinto. ISME J 5(1):42–50. (PMID: 20631808)
Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, VerBerkmoes NC, Hettich RL, Banfield JF (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA 107(19):8806–8811. (PMID: 20421484)
Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318(5857):1782–1786. (PMID: 18079405)
Bomberg M, Mäkinen J, Salo M, Kinnunen P (2019) High diversity in iron cycling microbial communities in acidic, iron-rich water of the Pyhäsalmi Mine, Finland. Geofluids. https://doi.org/10.1155/2019/7401304. (PMID: 10.1155/2019/7401304)
Brantner JS, Haake ZJ, Burwick JE, Menge CM, Hotchkiss ST, Senko JM (2014) Depth-dependent geochemical and microbiological gradients in Fe (III) deposits resulting from coal mine-derived acid mine drainage. Front Microbiol 5:215. (PMID: 248605624030175)
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. (PMID: 31565733156573)
Carr SA, Jungbluth SP, Eloe-Fadrosh EA, Stepanauskas R, Woyke T, Rappé MS, Orcutt BN (2019) Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. ISME J 13(6):1457–1468. (PMID: 307284686775978)
Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6(1):71–80.
Chen LX, Huang LN, Méndez-García C, Kuang JL, Hua ZS, Liu J, Shu WS (2016) Microbial communities, processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol 38:150–158. (PMID: 26921733)
Chesnin L, Yien CH (1951) Turbidimetric determination of available sulfates 1. Soil Sci Soc Am J 15(C):149–151.
Comolli LR, Banfield JF (2014) Inter-species interconnections in acid mine drainage microbial communities. Front Microbiol 5:367. (PMID: 251205334110969)
Dutta A, Sar P, Sarkar J, Dutta Gupta S, Gupta A, Bose H, Mukherjee A, Roy S (2019) Archaeal communities in deep terrestrial subsurface underneath the Deccan traps. India Front Microbiol 10:1362.
Golyshina OV, Lünsdorf H, Kublanov IV, Goldenstein NI, Hinrichs KU, Golyshin PN (2016a) The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov, of the order Thermoplasmatales. Int J Syst Evol Micrbiol 66(Pt 1):332.
Golyshina OV, Kublanov IV, Tran H, Korzhenkov AA, Lünsdorf H, Nechitaylo TY, Gavrilov SN, Toshchakov SV, Golyshin PN (2016b) Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments. Sci Rep 6:39034. (PMID: 279666725155288)
Golyshina OV, Bargiela R, Golyshin PN (2019) Cuniculiplasmataceae, their ecogenomic and metabolic patterns, and interactions with ‘ARMAN.’ Extremophiles 23(1):1–7. (PMID: 30499003)
Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P (2018) Low-abundance members of the Firmicutes facilitate bioremediation of soil impacted by highly acidic mine drainage from the Malanjkhand copper project, India. Front Microbiol 9:2882. (PMID: 306191026297179)
Gupta A, Dutta A, Panigrahi MK, Sar P (2020) Geomicrobiology of mine tailings from malanjkhand copper project, India. Geomicrobiol J. https://doi.org/10.1080/01490451.2020.1817197. (PMID: 10.1080/01490451.2020.1817197)
He H, Zhen Y, Mi T, Fu L, Yu Z (2018) Ammonia-oxidizing Archaea and Bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China. Front Microbiol 9:116. (PMID: 294565265801408)
Huang LN, Kuang JL, Shu WS (2016) Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol 24(7):581–593. (PMID: 27050827)
Johnson DB (2012) Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81(1):2–12. (PMID: 22224750)
Justice NB, Pan C, Mueller R, Spaulding SE, Shah V, Sun CL, Yelton AP, Miller CS, Thomas BC, Shah M, VerBerkmoes N (2012) Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities. Appl Environ Microbiol 78(23):8321–8330. (PMID: 230016463497393)
Kato S, Nakano S, Kouduka M, Hirai M, Suzuki K, Itoh T, Ohkuma M, Suzuki Y (2019) Metabolic potential of as-yet-uncultured archaeal lineages of Candidatus Hydrothermarchaeota thriving in deep-sea metal sulfide deposits. Microbes Environ 34(3):293–303. (PMID: 313787596759336)
Kerou M, Alves RJ, Schleper C (2016) Nitrososphaeria. In: Whitman WB (ed) Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken.
Korzhenkov AA, Toshchakov SV, Bargiela R, Gibbard H, Ferrer M, Teplyuk AV, Jones DL, Kublanov IV, Golyshin PN, Golyshina OV (2019) Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome 7(1):1–4.
Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7(5):1038–1050. (PMID: 23178673)
Lazar CS, Baker BJ, Seitz KW, Teske AP (2017) Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J 11(5):1118–1129. (PMID: 280851545398341)
Lehtovirta-Morley LE (2018) Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett 365(9):fny058.
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353(6305):1272–1277. (PMID: 27634532)
Massello FL, Chan CS, Chan KG, Goh KM, Donati E, Urbieta MS (2020) Meta-analysis of microbial communities in hot springs: recurrent taxa and complex shaping factors beyond pH and temperature. Microorganisms 8(6):906. (PMID: 7356817)
Méndez-García C, Mesa V, Sprenger RR, Richter M, Diez MS, Solano J, Gallego JR (2014) Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME J 8(6):1259–1274. (PMID: 244304864030236)
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475. (PMID: 260748874448039)
Mesa V, Gallego JL, González-Gil R, Lauga B, Sánchez J, Méndez-García C, Peláez AI (2017) Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Front Microbiol 8:1756. (PMID: 289553225600952)
Murphy JA, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36.
Pan J, Zhou Z, Béjà O, Cai M, Yang Y, Liu Y, Gu JD, Li M (2020) Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota. Microbiome 8:1–2.
Qiu GZ, Wan MX, Qian L, Huang ZY, Liu K, Liu XD, Shi WY, Yang Y (2008) Archaeal diversity in acid mine drainage from Dabaoshan Mine, China. J Basic Microbiol 48(5):401–409. (PMID: 18702068)
Ramanathan B, Boddicker AM, Roane TM, Mosier AC (2017) Nitrifier gene abundance and diversity in sediments impacted by acid mine drainage. Front Microbiol 8:2136. (PMID: 292092815701628)
Sanz JL, Rodríguez N, Díaz EE, Amils R (2011) Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Environ Microbiol 13(8):2336–2341. (PMID: 21605308)
Volant A, Desoeuvre A, Casiot C, Lauga B, Delpoux S, Morin G, Personné JC, Héry M, Elbaz-Poulichet F, Bertin PN, Bruneel O (2012) Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles 16(4):645–657. (PMID: 22714283)
Weber EB, Lehtovirta-Morley LE, Prosser JI, Gubry-Rangin C (2015) Ammonia oxidation is not required for growth of group 1.1 c soil Thaumarchaeota. FEMS Microbiol Ecol 91(3):fiv001. (PMID: 257645634399444)
Xiang X, Wang R, Wang H, Gong L, Man B, Xu Y (2017) Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci Rep 7:45028. (PMID: 283223305359579)
Yang Y, Yang LI, Sun QY (2014) Archaeal and bacterial communities in acid mine drainage from metal-rich abandoned tailing ponds, Tongling, China. Trans Nonferrous Met Soc China 24(10):3332–3342.
Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC, Banfield JF (2013) Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genom 14(1):485.
Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6(5):1032–1045. (PMID: 22134644)
Zhou Z, Pan J, Wang F, Gu JD, Li M (2018) Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 42(5):639–655. (PMID: 29790926)
Zou D, Pan J, Liu Z, Zhang C, Liu H, Li M (2020) The distribution of Bathyarchaeota in surface sediments of the Pearl river estuary along salinity gradient. Front Microbiol 11:285. (PMID: 321748997056671)
Grant Information:
BT/PR7533/BCE/8/959/2013 Department of Biotechnology, Government of India; IIT/SRIC/BT/ODM/2015-16/141 Indian Institute of Technology Kharagpur
Contributed Indexing:
Keywords: Acid mine drainage; Ammonia oxidation; Archaeal diversity; Chemoheterotrophy
Substance Nomenclature:
0 (DNA, Archaeal)
0 (Metals, Heavy)
0 (RNA, Ribosomal, 16S)
0 (Waste Water)
7664-41-7 (Ammonia)
789U1901C5 (Copper)
Entry Date(s):
Date Created: 20210103 Date Completed: 20210519 Latest Revision: 20221207
Update Code:
20240105
DOI:
10.1007/s00203-020-02130-4
PMID:
33388792
Czasopismo naukowe
Acid mine drainage (AMD) harbors all three life forms in spite of its toxic and hazardous nature. In comparison to bacterial diversity, an in-depth understanding of the archaeal diversity in AMD and their ecological significance remain less explored. Archaeal populations are known to play significant roles in various biogeochemical cycles within the AMD ecosystem, and it is imperative to have a deeper understanding of archaeal diversity and their functional potential in AMD system. The present study is aimed to understand the archaeal diversity of an AMD sediment of Malanjkhand Copper Project, India through archaea specific V6 region of 16S rRNA gene amplicon sequencing. Geochemical data confirmed the acidic, toxic, heavy metal-rich nature of the sample. Archaea specific V6-16S rRNA gene amplicon data showed a predominance of Thermoplasmata (BSLdp215, uncultured Thermoplasmata, and Thermoplasmataceae) and Nitrososphaeria (Nitrosotaleaceae) members constituting ~ 95% of the archaeal community. Uncultured members of Bathyarchaeia, Group 1.1c, Hydrothermarchaeota, and Methanomassiliicoccales along with Methanobacteriaceae, Methanocellaceae, Haloferaceae, Methanosaetaceae, and Methanoregulaceae constituted the part of rare taxa. Analysis of sequence reads indicated that apart from their close ecological relevance, members of the Thermoplasmata present in Malanjkhand AMD were mostly involved in chemoheterotrophy, Fe/S redox cycling, and with heavy metal resistance, while the Nitrososphaeria members were responsible for ammonia oxidation and fixation of HCO 3 - through 3-hydroxypropionate/4-hydroxybutyrate cycle at low pH and oligotrophic environment which subsequently played an important role in nitrification process in AMD sediment. Overall, the present study elucidated the biogeochemical significance of archaeal populations inhabiting the toxic AMD environment.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies