Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Systematic volumetric analysis predicts response to CSF drainage and outcome to shunt surgery in idiopathic normal pressure hydrocephalus.

Tytuł:
Systematic volumetric analysis predicts response to CSF drainage and outcome to shunt surgery in idiopathic normal pressure hydrocephalus.
Autorzy:
Wu D; Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
Moghekar A; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Shi W; Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
Blitz AM; Department of Radiology, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
Mori S; Department of Radiology, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA. .; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA. .
Źródło:
European radiology [Eur Radiol] 2021 Jul; Vol. 31 (7), pp. 4972-4980. Date of Electronic Publication: 2021 Jan 03.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer International, c1991-
MeSH Terms:
Hydrocephalus, Normal Pressure*/diagnostic imaging
Hydrocephalus, Normal Pressure*/surgery
Cerebrospinal Fluid Shunts ; Drainage ; Humans ; Neuroimaging ; Retrospective Studies
References:
Bergsneider M, Black PM, Klinge P, Marmarou A, Relkin N (2005) Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 57:29–39. (PMID: 10.1227/01.NEU.0000168186.45363.4D)
Gallia GL, Rigamonti D, Williams MA (2006) The diagnosis and treatment of idiopathic normal pressure hydrocephalus. Nat Clin Pract Neurol 2:375–381. (PMID: 10.1038/ncpneuro0237)
Saper CB (2017) Is there even such a thing as “Idiopathic normal pressure hydrocephalus”? Ann Neurol 82:514–515. (PMID: 10.1002/ana.25053)
Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:S4–S16 discussion ii-v.
Mihalj M, Dolic K, Kolic K, Ledenko V (2016) CSF tap test - Obsolete or appropriate test for predicting shunt responsiveness? A systemic review. J Neurol Sci 362:78–84. (PMID: 10.1016/j.jns.2016.01.028)
Lee WJ, Wang SJ, Hsu LC, Lirng JF, Wu CH, Fuh JL (2010) Brain MRI as a predictor of CSF tap test response in patients with idiopathic normal pressure hydrocephalus. J Neurol 257:1675–1681. (PMID: 10.1007/s00415-010-5602-8)
Yamada S, Ishikawa M, Yamamoto K (2015) Optimal diagnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. AJNR Am J Neuroradiol 36:2262–2269. (PMID: 10.3174/ajnr.A4440)
Luikku AJ, Hall A, Nerg O et al (2016) Multimodal analysis to predict shunt surgery outcome of 284 patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochir 158:2311–2319. (PMID: 10.1007/s00701-016-2980-4)
Ringstad G, Lindstrom EK, Vatnehol SAS, Mardal KA, Emblem KE, Eide PK (2017) Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging. PLoS One 12.
Hashimoto M, Ishikawa M, Mori E, Kuwana N (2010) Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 7:18. (PMID: 10.1186/1743-8454-7-18)
Evans WA (1942) An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry 47:931–937. (PMID: 10.1001/archneurpsyc.1942.02290060069004)
Toma AK, Holl E, Kitchen ND, Watkins LD (2011) Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 68:939–944. (PMID: 10.1227/NEU.0b013e318208f5e0)
Miskin N, Patel H, Franceschi AM et al (2017) Diagnosis of normal-pressure hydrocephalus: use of traditional measures in the era of volumetric MR imaging. Radiology 285:197–205. (PMID: 10.1148/radiol.2017161216)
Serulle Y, Rusinek H, Kirov II et al (2014) Differentiating shunt-responsive normal pressure hydrocephalus from Alzheimer disease and normal aging: pilot study using automated MRI brain tissue segmentation. J Neurol 261:1994–2002. (PMID: 10.1007/s00415-014-7454-0)
Moore DW, Kovanlikaya I, Heier LA et al (2012) A pilot study of quantitative MRI measurements of ventricular volume and cortical atrophy for the differential diagnosis of normal pressure hydrocephalus. Neurol Res Int 2012:718150. (PMID: 10.1155/2012/718150)
Yamada S, Ishikawa M, Yamamoto K (2016) Comparison of CSF Distribution between idiopathic normal pressure hydrocephalus and Alzheimer disease. AJNR Am J Neuroradiol 37:1249–1255. (PMID: 10.3174/ajnr.A4695)
Czerwosz L, Szczepek E, Nowinski K et al (2018) Discriminant analysis of intracranial volumetric variables in patients with normal pressure hydrocephalus and brain atrophy. Adv Exp Med Biol 1039:83–94. (PMID: 10.1007/5584_2017_75)
Halperin JJ, Kurlan R, Schwalb JM, Cusimano MD, Gronseth G, Gloss D (2015) Practice guideline: Idiopathic normal pressure hydrocephalus: response to shunting and predictors of response: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 85:2063–2071. (PMID: 10.1212/WNL.0000000000002193)
Shinoda N, Hirai O, Hori S et al (2017) Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: clinical research. J Neurosurg 127:1436–1442. (PMID: 10.3171/2016.9.JNS161080)
Virhammar J, Laurell K, Cesarini KG, Larsson EM (2014) The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J Neurosurg 120:178–184. (PMID: 10.3171/2013.8.JNS13575)
Hong YJ, Kim MJ, Jeong E et al (2018) Preoperative biomarkers in patients with idiopathic normal pressure hydrocephalus showing a favorable shunt surgery outcome. J Neurol Sci 387:21–26. (PMID: 10.1016/j.jns.2018.01.017)
Pyykko OT, Lumela M, Rummukainen J et al (2014) Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS One 9:e91974. (PMID: 10.1371/journal.pone.0091974)
Mori S, Wu D, Ceritoglu C et al (2016) MRICloud: delivering high-throughput MRI neuroinformatics as cloud-based software as a service. Comput Sci Eng 18:21–35. (PMID: 10.1109/MCSE.2016.93)
Djamanakova A, Tang XY, Li X et al (2014) Tools for multiple granularity analysis of brain MRI data for individualized image analysis. Neuroimage 101:168–176. (PMID: 10.1016/j.neuroimage.2014.06.046)
Tinetti ME, Williams TF, Mayewski R (1986) Fall risk index for elderly patients based on number of chronic disabilities. Am J Med 80:429–434. (PMID: 10.1016/0002-9343(86)90717-5)
Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148. (PMID: 10.1111/j.1532-5415.1991.tb01616.x)
Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. (PMID: 10.1016/0022-3956(75)90026-6)
Nasreddine ZS, Phillips NA, Bedirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. (PMID: 10.1111/j.1532-5415.2005.53221.x)
Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA (2013) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35:611–623. (PMID: 10.1109/TPAMI.2012.143)
Wu D, Ma T, Ceritoglu C et al (2016) Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI. Neuroimage 125:120–130. (PMID: 10.1016/j.neuroimage.2015.10.042)
Mai JK, Paxinos G, Voss T (2007) Atlas of the human brain, 3rd edn. Academic Press, Cambridge, Massachusetts.
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182.
Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. Springer, Berlin, Heidelberg, pp 39–50.
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol 58:267–288.
Mori E, Ishikawa M, Kato T et al (2012) Guidelines for management of idiopathic normal pressure hydrocephalus: Second Edition. Neurol Med Chir (Tokyo) 52:775–809. (PMID: 10.2176/nmc.52.775)
Liang ZF, He XH, Ceritoglu C et al (2015) Evaluation of cross-protocol stability of a fully automated brain multi-atlas parcellation tool. PLoS One 10.
Kang K, Kwak K, Yoon U, Lee JM (2018) Lateral ventricle enlargement and cortical thinning in idiopathic normal-pressure hydrocephalus patients. Sci Rep 8.
Savolainen S, Laakso MP, Paljarvi L et al (2000) MR imaging of the hippocampus in normal pressure hydrocephalus: Correlations with cortical Alzheimer’s disease confirmed by pathologic analysis. AJNR Am J Neuroradiol 21:409–414. (PMID: 106960327975349)
Wilson JT, Hareendran A, Grant M et al (2003) Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin Scale - Response. Stroke 34:378–378.
Virhammar J, Laurell K, Cesarini KG, Larsson EM (2014) Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol 35:2311–2318. (PMID: 10.3174/ajnr.A4046)
Ahmed AK, Luciano M, Moghekar A et al (2018) Does the presence or absence of DESH predict outcomes in adult hydrocephalus? AJNR Am J Neuroradiol 39:2022–2026. (PMID: 10.3174/ajnr.A5820)
Tarnaris A, Kitchen ND, Watkins LD (2009) Non-invasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging. J Neurosurg 110:837–851. (PMID: 10.3171/2007.9.17572)
Grant Information:
2018YFE0114600 Ministry of Science and Technology of the People's Republic of China; 61801424, 81971606, 91859201 National Natural Science Foundation of China; 2019QNA5024 Fundamental Research Funds for the Central Universities
Contributed Indexing:
Keywords: Algorithm; Hydrocephalus; Normal pressure; Segmentation; Volume
Entry Date(s):
Date Created: 20210103 Date Completed: 20210623 Latest Revision: 20210708
Update Code:
20240105
PubMed Central ID:
PMC8213563
DOI:
10.1007/s00330-020-07531-z
PMID:
33389035
Czasopismo naukowe
Objectives: Idiopathic normal pressure hydrocephalus (INPH) is a neurodegenerative disorder characterized by excess cerebrospinal fluid (CSF) in the ventricles, which can be diagnosed by invasive CSF drainage test and treated by shunt placement. Here, we aim to investigate the diagnostic and prognostic power of systematic volumetric analysis based on brain structural MRI for INPH.
Methods: We performed a retrospective study with a cohort of 104 probable INPH patients who underwent CSF drainage tests and another cohort of 41 INPH patients who had shunt placement. High-resolution T1-weighted images of the patients were segmented using an automated pipeline into 283 structures that are grouped into different granularity levels for volumetric analysis. Volumes at multi-granularity levels were used in a recursive feature elimination model to classify CSF drainage responders and non-responders. We then used pre-surgical brain volumes to predict Tinetti and MMSE scores after shunting, based on the least absolute shrinkage and selection operator.
Results: The classification accuracy of differentiating the CSF drainage responders and non-responders increased as the granularity increased. The highest diagnostic accuracy was achieved at the finest segmentation with a sensitivity/specificity/precision/accuracy of 0.89/0.91/0.84/0.90 and an area under the curve of 0.94. The predicted post-surgical neurological scores showed high correlations with the ground truth, with r = 0.80 for Tinetti and r = 0.88 for MMSE. The anatomical features that played important roles in the diagnostic and prognostic tasks were also illustrated.
Conclusions: We demonstrated that volumetric analysis with fine segmentation could reliably differentiate CSF drainage responders from other INPH-like patients, and it could accurately predict the neurological outcomes after shunting.
Key Points: • We performed a fully automated segmentation of brain MRI at multiple granularity levels for systematic volumetric analysis of idiopathic normal pressure hydrocephalus (INPH) patients. • We were able to differentiate patients that responded to CSF drainage test with an accuracy of 0.90 and area under the curve of 0.94 in a cohort of 104 probable INPH patients, as well as to predict the post-shunt gait and cognitive scores with a coefficient of 0.80 for Tinetti and 0.88 for MMSE. • Feature analysis showed the inferior lateral ventricle, bilateral hippocampus, and orbital cortex are positive indicators of CSF drainage responders, whereas the posterior deep white matter and parietal subcortical white matter were negative predictors.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies