Information

Dear user, the application need JavaScript support. Please enable JavaScript in your browser.

Title of the item:

Chemical composition and acaricidal activity of Eucalyptus globulus essential oil against the vector of tropical bovine piroplasmosis, Rhipicephalus (Boophilus) annulatus.

Title:
Chemical composition and acaricidal activity of Eucalyptus globulus essential oil against the vector of tropical bovine piroplasmosis, Rhipicephalus (Boophilus) annulatus.
Authors:
Adenubi OT; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Ogun State, PMB 2240, Alabata, Abeokuta, Nigeria. .
Abolaji AO; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Ogun State, PMB 2240, Alabata, Abeokuta, Nigeria.
Salihu T; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Ogun State, PMB 2240, Alabata, Abeokuta, Nigeria.; Nigeria Natural Medicine Development Agency, 9 Kofo Abayomi Street, Victoria Island, Lagos State, Nigeria.
Akande FA; Department of Veterinary Parasitology and Entomology, College of Veterinary Medicine, Federal University of Agriculture, Ogun State, PMB 2240, Alabata, Abeokuta, Nigeria.
Lawal H; Nigeria Natural Medicine Development Agency, 9 Kofo Abayomi Street, Victoria Island, Lagos State, Nigeria.
Source:
Experimental & applied acarology [Exp Appl Acarol] 2021 Feb; Vol. 83 (2), pp. 301-312. Date of Electronic Publication: 2021 Jan 03.
Publication Type:
Journal Article
Language:
English
Imprint Name(s):
Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Amsterdam ; New York : Elsevier, [c1985-
MeSH Terms:
Acaricides*
Babesiosis*
Cattle Diseases*
Eucalyptus*
Oils, Volatile*/pharmacology
Rhipicephalus*
Animals ; Cattle ; Eucalyptus Oil ; Female ; Larva ; Nigeria
References:
Akande FA, Garba AO, Adenubi OT (2020) In vitro analysis of the efficacy of selected commercial acaricides on the cattle tick Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae). Egypt J Vet Sci 51(2):153–161.
Akolade JO, Olajide OO, Afolayan MO, Akande SA, Idowu DI, Orishadipe AT (2012) Chemical composition, antioxidant and cytotoxic effects of Eucalyptus globulus grown in north-central Nigeria. J Nat Prod Plant Res 2(1):1–8.
Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62. (PMID: 10.1016/j.chemosphere.2016.09.070)
Atmani-Merabet G, Belkhiri A, Dems MA, Lalaouna A, Khalfaoui Z, Mosbah B (2018) Chemical composition, toxicity and acaricidal activity of Eucalyptus globulus essential oil from Algeria. Curr Issues Pharm Med Sci 31(2):89–93.
Badawy ME, El-Arami SA, Abdelgaleil SA (2010) Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite Tetranychus urticae. Exp Appl Acarol 52(3):261–274. (PMID: 10.1007/s10493-010-9363-y)
Barbosa LCA, Filomeno CA, Teixeira RR (2016) Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 21(12):1671. https://doi.org/10.3390/molecules21121671. (PMID: 10.3390/molecules211216716273930)
Betancourt-Cravioto M, Falcón-Lezama JA, Tapia-Conyer R (2017) Roadmap for the introduction of a new Dengue vaccine. In: Speranza MA (ed) Dengue: immunopathology and control strategies, pp 125–140.
Bhat MH, Jain AK, Fayaz M (2018) Indian herbal drug industry: challenges and prospects. In: Ozturk M, Hakeem K (eds) Plant and human health. Springer, Cham, pp 657–673. (PMID: 10.1007/978-3-319-93997-1_18)
Bipin K, Ray J, Goyal P, Aggarwal K (2015) Approach of Eucalyptus globulus plant parts for human health safety and toxicological aspects. Br Open J Plant Sci 1(1):1–10.
Camilo CJ, Alves Nonato CDF, Galvão-Rodrigues FF, Costa WD, Clemente GG, Macedo S, Custódio MA, Rodrigues G, Fernandes F, da Costa JGM (2017) Acaricidal activity of essential oils: a review. Trends Phytochem Res 1(4):183–198.
Chagas ACS, Passos WM, Prates HT, Leite RC, Furlong J, Fortes ICP (2002) Acaricidal effect of essential oils and concentrates emulsification of Eucalyptus spp. in Boophilus microplus. Braz J Vet Res An Sci 39:247–253.
Dehghani-Samani A, Madreseh-Ghahfarokhi S, Dehghani-Samani A (2015) Acaricidal and repellent activities of essential oil of Eucalyptus globulus against Dermanyssus gallinae (Acari: Mesostigmata). J Herbmed Pharmacol 4:81–84.
De Meneghi D, Stachurski F, Adakal H (2016) Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: possible environmental and public health implications. Public Health Front 4:239–249. (PMID: 10.3389/fpubh.2016.00239)
Derwich E, Benziane Z, Boukir A (2009) GC/MS analysis of volatile constituents and antibacterial activity of the essential oil of the leaves of Eucalyptus globulus in Atlas Median from Morocco. Adv Nat Appl Sci 3(3):305–314.
Djebir S, Ksouri S, Trigui M, Tounsi S, Boumaaza A, Hadef Y, Benakhla A (2019) Chemical composition and acaricidal activity of the essential oils of some plant species of Lamiaceae and Myrtaceae against the vector of tropical bovine theileriosis: Hyalomma scupense (syn. Hyalomma detritum). Biomed Res Int. https://doi.org/10.1155/2019/7805467. (PMID: 10.1155/2019/7805467308819976383433)
Elyemni M, Louaste B, Nechad I, Elkamli T, Bouia A, Taleb M, Chaoush M, Eloutassi N (2019) Extraction of essential oils of Rosmarinus officinalis L. by two different methods: hydrodistillation and microwave assisted hydrodistillation. Sci World J. https://doi.org/10.1155/2019/3659432. (PMID: 10.1155/2019/3659432)
Ekhuemelo DO, Onah G, Wuam L (2017) Evaluation of the uses of Eucalyptus species in Makurdi Local Government Area of Benue State, Nigeria. GSC Biol Pharm Sci 1(1):25–34. (PMID: 10.30574/gscbps.2017.1.1.0012)
Failloux AB, Moutailler S (2015) Zoonotic aspects of vector-borne infections. Rev Sci Technol 34(1):175–183. (PMID: 10.20506/rst.34.1.2352)
Food and Agriculture Organisation (2004) Module 1: ticks: Acaricide resistance: diagnosis, management and prevention, pp 25–77.
Greay TL, Oskam CL, Gofton AW, Rees RL, Ryan UM, Irwin PJ (2016) A survey of ticks (Acari: Ixodidae) of companion animals in Australia. Parasit Vectors 9(1):207–217. (PMID: 10.1186/s13071-016-1480-y)
Hurtado OJB, Giraldo-Ríos C (2018) Economic and health impact of the ticks in production animals. Ticks and tick-borne pathogens. Intech Open. https://doi.org/10.5772/intechopen.81167. (PMID: 10.5772/intechopen.81167)
Hussein H, Reda A, Momen F (2013) Repellent, antifeedent and toxic effects of three essential oils on the two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Acta Phytopathol Entomol Hung 48(1):177–186. (PMID: 10.1556/APhyt.48.2013.1.17)
Immediato D, Figueredo LA, Iatta R, Camarda A, de Luna RLN, Giangaspero A, Brandão-Filho SP, Otranto D, Cafarchia C (2016) Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): towards new natural acaricides. Vet Parasitol 229:159–165. (PMID: 10.1016/j.vetpar.2016.10.018)
Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialization. Adv Phytomed 3:29–44. (PMID: 10.1016/S1572-557X(06)03002-9)
Karemu CK, Ndung’u MW, Githua M (2013) Repellent effects of essential oils from selected Eucalyptus species and their major constituents against Sitophilus zeamais (Coleoptera: Curculionidae). Int J Trop Insect Sci 33(3):188–194. (PMID: 10.1017/S1742758413000179)
Klafke GM, Miller RJ, Tidwell J, Barreto R, Guerrero FD, Kaufman PE, Pérez de León AA (2017) Mutation in the sodium channel gene corresponds with phenotypic resistance of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) to pyrethroids. J Med Entomol 54:1639–1642. (PMID: 10.1093/jme/tjx060)
Lawal-Adebowale OA (2012) Factors influencing small ruminant production in selected urban communities of Abeokuta. Ogun State Niger J Anim Prod 39(1):218–228.
Li G, Lou HX (2018) Strategies to diversify natural products for drug discovery. Med Res Rev 38(4):1255–1294. (PMID: 10.1002/med.21474)
Lieberman HR (1983) Computation of psychophysical thresholds using the probit technique. Behav Res Methods Instrum 15(4):446–448. (PMID: 10.3758/BF03203681)
Lorusso V, Picozzi K, de Bronsvoort BM, Majekodunmi A, Dongkum C, Balak G, Welburn SC (2013) Ixodid ticks of traditionally managed cattle in central Nigeria: where Rhipicephalus (Boophilus) microplus does not dare (yet?). Parasit Vectors 6(1):171–181. (PMID: 10.1186/1756-3305-6-171)
Lucia A, Licastro S, Zerba E, Audino PG, Masuh H (2009) Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapours of Eucalyptus essential oils. Bioresour Technol 100(23):6083–6087. (PMID: 10.1016/j.biortech.2009.02.075)
Madreseh-Ghahfarokhi S, Dehghani-Samani A, Pirali Y (2019) Zingiber officinalis and Eucalyptus globulus, potent lethal/repellent agents against Rhipicephalus bursa, probable carrier for zoonosis. J Arthropod-Borne Dis 13:214–223. (PMID: 318037836885137)
Marcic D (2012) Acaricides in modern management of plant-feeding mites. J Pest Sci 85(4):395–408. (PMID: 10.1007/s10340-012-0442-1)
Mawalagedera SM, Symonds MR, Callahan DL, Gaskett AC, Rønsted N (2019) Combining evolutionary inference and metabolomics to identify plants with medicinal potential. Front Ecol Evol 7:267. https://doi.org/10.3389/fevo.2019.00267. (PMID: 10.3389/fevo.2019.00267)
Mossi AJ, Astolfi V, Kubiak G, Lerin L, Zanella C, Toniazzo G, de Oliveira D, Treichel H, Devilla IA, Cansiana R, Restello R (2011) Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). J Sci Food Agric 91(2):273–277. (PMID: 10.1002/jsfa.4181)
Ogden NH, Lindsay LR (2016) Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol 32(8):646–656. (PMID: 10.1016/j.pt.2016.04.015)
Opara M, Maxwell NE (2012) Ixodid ticks of cattle in Borno and Yobe states in North eastern Nigeria: breed and coat colour preference. Anim Res Int 8(1):1359–1365.
Pamo ET, Tendonkeng F, Kana JR, Payne VK, Boukila B, Lemoufouet J, Nanda AS (2005) A study of the acaricidal properties of an essential oil extracted from the leaves of Ageratum houstonianum. Vet Parasitol 128:3–4.
Pirali-Kheirabadi K, Razzaghi-Abyaneh M, Halajian A (2009) Acaricidal effect of Pelargonium roseum and Eucalyptus globulus essential oils against adult stage of Rhipicephalus (Boophilus) annulatus in vitro. Vet Parasitol 162(3–4):346–349. (PMID: 10.1016/j.vetpar.2009.03.015)
Prates HT, Santos JP, Waquil JM, Fabris JD, Oliveira AB, Foster JE (1998) Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) a Tribolium castaneum (Herbst). J Stored Prod Res 34:243–249. (PMID: 10.1016/S0022-474X(98)00005-8)
Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Ann Rev Entomol 57:405–424. (PMID: 10.1146/annurev-ento-120710-100554)
Roh HS, Lee BH, Park CG (2013) Acaricidal and repellent effects of myrtacean essential oils and their major constituents against Tetranychus urticae (Tetranychidae). J Asia Pac Entomol 16(3):245–249. (PMID: 10.1016/j.aspen.2013.03.001)
Rossi YE, Palacios SM (2015) Insecticidal toxicity of Eucalyptus cinerea essential oil and 1,8-cineole against Musca domestica and possible uses according to the metabolic response of flies. Ind Crop Prod 63:133–137. (PMID: 10.1016/j.indcrop.2014.10.019)
Thorsell W, Mikiver A, Tunon H (2006) Repelling properties of some plant materials on the tick Ixodes ricinus L. Phytomed 13:132–134. (PMID: 10.1016/j.phymed.2004.04.008)
Vuong QV, Chalmers AC, Jyoti Bhuyan D, Bowyer MC, Scarlett CJ (2015) Botanical, phytochemical and anticancer properties of the Eucalyptus species. Chem Biodivers 12(6):907–924. (PMID: 10.1002/cbdv.201400327)
Walker AR (2003) Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, Edinburgh, pp 3–210.
Yang YC, Choi HY, Choi WS, Clark JM, Ahn YJ (2004) Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J Agric Food Chem 52(9):2507–2511. (PMID: 10.1021/jf0354803)
Contributed Indexing:
Keywords: Acaricidal; Essential oil; Eucalyptol; Eucalyptus; Fecundity; Ticks
Substance Nomenclature:
0 (Acaricides)
0 (Oils, Volatile)
2R04ONI662 (Eucalyptus Oil)
Entry Date(s):
Date Created: 20210103 Date Completed: 20210203 Latest Revision: 20210203
Update Code:
20240105
DOI:
10.1007/s10493-020-00578-z
PMID:
33389348
Academic Journal
Ticks are of great economic importance to humans and animals due to their role in disease transmission. The application of synthetic, chemical acaricides on the animal and/or the environment (the most used tick control method globally) has led to the selection of tick populations that are resistant. Their adverse effects on ecology and human and animal health cannot be overemphasised. As a result, the search for alternatives that are natural and can overcome these adverse effects are strongly indicated. Using gas chromatography-mass spectrometry (GC-MS) and adult immersion test (AIT), this study evaluated the chemical composition and acaricidal activity, respectively, of Eucalyptus globulus essential oil (EO) on Rhipicephalus (Boophilus) annulatus ticks. This is a major tick species implicated for the transmission of bovine piroplasmosis in Nigeria. The acaricidal activity was evaluated using different concentrations (0.625, 1.25, 2.5, 5 and 10%) of E. globulus EO. Amitraz (1 and 2%) and cypermethrin (2%) served as the positive control and 2% dimethylsulfoxide in distilled water was the negative control. Three replicates of 10 engorged female ticks each were immersed in the test samples for 2 min and the experiment was done twice. The GC-MS analysis identified the major constituents of E. globulus EO as eucalyptol (1,8-cineole) (78%), menthol (20%) and menthone (3%). Eucalyptus globulus EO caused 97% acaricidal mortality at 10% concentration. The lower concentrations reduced tick fecundity up to 90% in a dose-dependent manner. This study provides support for plant EOs as alternative tick control strategy for humans and animals.

We use cookies to help identify your computer so we can tailor your user experience, track shopping basket contents and remember where you are in the order process.