Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Proteomic analysis from skin swabs reveals a new set of proteins identifying skin impairment in atopic dermatitis.

Tytuł:
Proteomic analysis from skin swabs reveals a new set of proteins identifying skin impairment in atopic dermatitis.
Autorzy:
Morelli P; Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Gaspari M; Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Gabriele C; Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Dastoli S; Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Bennardo L; Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Pavel AB; Department of Biomedical Engineering, University of Mississippi, University, MS, USA.
Patruno C; Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Del Duca E; Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Nisticò SP; Department of Health Science, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
Źródło:
Experimental dermatology [Exp Dermatol] 2021 Jun; Vol. 30 (6), pp. 811-819. Date of Electronic Publication: 2021 Jan 23.
Typ publikacji:
Comparative Study; Journal Article
Język:
English
Imprint Name(s):
Original Publication: Copenhagen : Munksgaard, c1992-
MeSH Terms:
Dermatitis, Atopic/*metabolism
Adult ; Female ; Humans ; Male ; Middle Aged ; Proteomics ; Young Adult
References:
Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nature Reviews Disease Primers. 2018;4:1.
Patruno C, Fabbrocini G, Napolitano M. Clinical phenotypes of atopic dermatitis of the adult. G Ital Dermatol Venereol. 2020. [online ahead of print].
de la O-Escamilla NO, Sidbury R. Atopic Dermatitis: update on Pathogenesis and Therapy. Pediatr Ann. 2020;49(3):e140-e146.
Elias PM. Primary role of barrier dysfunction in the pathogenesis of atopic dermatitis. Exp Dermatol. 2018;27(8):847-851.
Tsakok T, Woolf R, Smith CH, Weidinger S, Flohr C. Atopic dermatitis: the skin barrier and beyond. Br J Dermatol. 2018;180(3):464-474.
Brunner PM, Guttman-Yassky E, Leung DYM. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol. 2017;139(4):S65-S76.
Pona A, Nguyen M, Kolli S, Feldman S, Strowd L. Recent insights in atopic dermatitis pathogenesis, treatment, and disease impact. J Dermatol Dermatologic Surg. 2019;23(2):66.
Patruno C, Amerio P, Chiricozzi A, et al. Optimizing a clinical guidance for diagnosis of atopic dermatitis in adults: joint recommendations of the Italian Society of Dermatology and Venereology (SIDeMaST), Italian Association of Hospital Dermatologists (ADOI), and Italian Society of Allergological, Occupational and Environmental Dermatology (SIDAPA). G Ital Dermatol Venereol. 2020;155(1):1-7.
Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging multilayered “omics” data for atopic dermatitis: a road map to precision medicine. Front Immunol. 2018;9. [online ahead of print].
Kim BE, Goleva E, Kim PS, et al. Side-by-side comparison of skin biopsies and skin tape stripping highlights abnormal stratum corneum in atopic dermatitis. J Invest Dermatol. 2019;139(11):2387-2389.e1.
Gevers D, Knight R, Petrosino JF, et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10(8):e1001377.
Kong HH, Andersson B, Clavel T, et al. Performing skin microbiome research: a method to the madness. J Invest Dermatol. 2017;137(3):561-568.
Zhang X, Deeke SA, Ning Z, et al. Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat Commun. 2018;9(1):2873-2883.
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2(8):1896-1906.
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301-2319.
Tyanova S, Temu T, Sinitcyn P, et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731-740.
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;47(D1):D607-D613.
Bhattacharya N, Ganguli-Indra G, Indra AK. Transcriptional control and transcriptomic analysis of lipid metabolism in skin barrier formation and atopic dermatitis (AD). Exp Rev Proteomics. 2019;16(8):627-645.
Sakabe J-I, Kamiya K, Tokura Y. Proteome analysis of stratum corneum from atopic dermatitis patients by hybrid quadrupole-orbitrap mass spectrometer. J Dermatol Sci. 2016;84(1):e37-e38.
Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 proteins as an important regulator of macrophage inflammation. Front Immunol. 2017;8:1908.
Lu R, Wang GG. Tudor: a versatile family of histone methylation ‘readers’. Trends Biochem Sci. 2013;38(11):546-555.
Pek JW, Anand A, Kai T. Tudor domain proteins in development. Development. 2012;139(13):2255-2266.
McAleer MA, Jakasa I, Raj N, et al. Early-life regional and temporal variation in filaggrin-derived natural moisturizing factor, filaggrin-processing enzyme activity, corneocyte phenotypes and plasmin activity: implications for atopic dermatitis. Br J Dermatol. 2018; 179(2):431-441.
Čepelak I, Dodig S, Pavić I. Filaggrin and atopic march. Biochemia Medica. 2019;29(2):214-227.
Atherton P, Stutchbury B, Jethwa D, Ballestrem C. Mechanosensitive components of integrin adhesions: role of vinculin. Exp Cell Res. 2016;343(1):21-27.
Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the ‘fused genes’ family. Exp Dermatol. 2012;21(9):643-649.
Ziegler C, Graf J, Faderl S, et al. The long non-coding RNA LINC 00941 and SPRR 5 are novel regulators of human epidermal homeostasis. EMBO Rep. 2019;20(2):e46612.
Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal. 2011;23(2):317-323.
de Veer SJ, Furio L, Harris JM, Hovnanian A. Proteases and proteomics: cutting to the core of human skin pathologies. PROTEOMICS - Clin Appl. 2014;8(5-6):389-402.
Heit C, Jackson BC, McAndrews M, et al. Update of the human and mouse SERPIN gene superfamily. Hum Genom. 2013;7(1):22.
Deiteren K, Hendriks D, Scharpé S, Lambeir AM. Carboxypeptidase M: multiple alliances and unknown partners. Clin Chim Acta. 2009;399(1-2):24-39.
Rutz N, Heilbronn R, Weger S. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: evidence for a role in protein stabilization. Biochem Biophys Res Comm. 2015;464(3):922-928.
Njomen E, Tepe JJ. Proteasome activation as a new therapeutic approach to target proteotoxic disorders. J Med Chem. 2019;62(14):6469-6481.
Monteleon CL, Agnihotri T, Dahal A, et al. Lysosomes support the degradation, signaling, and mitochondrial metabolism necessary for human epidermal differentiation. J Invest Dermatol. 2018;138(9):1945-1954.
Valero-Rubio D, Jiménez KM, Fonseca DJ, Payán-Gómez C, Laissue P. Transcriptomic analysis of FUCA1 knock-down in keratinocytes reveals new insights into the pathogenesis of fucosidosis skin lesions. Exp Dermatol. 2018;27(6):663-667.
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287-293.
Ishiwatari S, Takahashi M, Yasuda C, et al. The protective role of DJ-1 in ultraviolet-induced damage of human skin: DJ-1 levels in the stratum corneum as an indicator of antioxidative defense. Arch Dermatol Res. 2015;307(10):925-935.
Lu L, Li J, Moussaoui M, Boix E. Immune modulation by human secreted RNases at the extracellular space. Front Immunol. 2018;9:1012.
Drakeford C, O’Donnell JS. Targeting von Willebrand factor-mediated inflammation. Arterioscler Thromb Vasc Biol. 2017;37(9):1590-1591.
Urbaniak A, Jablonska K, Podhorska-Okolow M, Ugorski M, Dziegiel P. Prolactin-induced protein (PIP)-characterization and role in breast cancer progression. Am J Cancer Res. 2018;8(11):2150-2164.
Kucher AN, Cherevko NA. Genes of the histamine pathway and common diseases. Russ J Genet. 2018;54(1):12-26.
Oetjen LK, Kim BS. Interactions of the immune and sensory nervous systems in atopy. FEBS J. 2018;285(17):3138-3151.
Gan B, Chen S, Liu H, Min J, Liu K. Structure and function of eTudor domain containing TDRD proteins. Crit Rev Biochem Mol Biol. 2019;54(2):119-132.
Lenart P, Novak J, Bienertova-Vasku J. PIWI-piRNA pathway: setting the pace of aging by reducing DNA damage. Mech Ageing Dev. 2018;173:29-38.
Mulero-Navarro S, Fernandez-Salguero PM. New trends in aryl hydrocarbon receptor biology. Front Cell Dev Biol. 2016;4:45-46.
Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci. 2017;74(16):2999-3009.
Gao S. Cathepsin G and its role in inflammation and autoimmune diseases. Arch Rheumatol. 2018;33(4):498-504.
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal sphingolipid world in inflammation specific for lysosomal storage diseases and skin disorders. Int J Mol Sci. 2018;19(1):247.
Noh JY, Shin JU, Kim JH, et al. ZAG regulates the skin barrier and immunity in atopic dermatitis. J Invest Dermatol. 2019;139(8):1648-1657.e7.
van Smeden J, Bouwstra JA. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Current problems in dermatology, (Eds:T Agner) . Karger Publishers, Copenhagen; 2016:8-26.
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: a vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res. 2016;64:138-151.
Bandorowicz-Pikula J, Wos M, Pikula S. Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited. Mol Membrane Biol. 2012;29(7):229-242.
Liu C, Chen Y, Kochevar IE, Jurkunas UV. Decreased DJ-1 leads to impaired Nrf2-regulated antioxidant defense and increased UV-A-induced apoptosis in corneal endothelial cells. Invest Opthalmol Visual Sci. 2014;55(9):5551.
Boix E, Acquati F, Leonidas D, Pulido D. Editorial: role of ribonucleases in immune response regulation during infection and cancer. Front Immunol. 2020;11. [Epub Ahead of Print].
Contributed Indexing:
Keywords: TDRD15; atopic dermatitis; barrier; proteomic; skin swab
Entry Date(s):
Date Created: 20210104 Date Completed: 20220322 Latest Revision: 20220322
Update Code:
20240105
DOI:
10.1111/exd.14276
PMID:
33394542
Czasopismo naukowe
Atopic Dermatitis (AD) is a common inflammatory skin disease characterized by skin and systemic inflammation, and barrier dysfunction. Herein, we investigate the proteomic profile of AD skin barrier to identify a unique signature with an easy-performed sampling approach. We enrolled 8 moderate-to-severe AD patients and 8 age- and gender-matched healthy controls. Swabs were obtained from non-lesional skin of retroauricular area and antecubital fold. Peptide mixtures obtained through protein precipitation and in-solution digestion were analysed using NanoLC-MS/MS. Label-free quantification and statistical analysis were conducted in MaxQuant and Perseus. Bioinformatics analysis was performed using Gene Ontology and STRING. We identified 908 proteins and 35 differentially expressed proteins were selected (fold change 2, FDR < 0.05). Particularly, AD skin showed downregulation of skin hydration factors, structural and epidermal proteins, abnormalities in protease-proteasome complex and lipid metabolism profile. Imbalance of antioxidant and inflammatory processes, along with TDRD15 upregulation was also observed. Our result showed partial overlap with skin biopsy/tape-strips studies, showing the reliability of our sampling approach which could be an easier method of detection of hallmark barrier proteins in AD. Furthermore, we displayed a new differentially expressed set of proteins, not yet explored in AD which can have a potential role in AD pathomechanisms.
(© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies