Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Defining the role of a caffeic acid 3-O-methyltransferase from Azadirachta indica fruits in the biosynthesis of ferulic acid through heterologous over-expression in Ocimum species and Withania somnifera.

Tytuł:
Defining the role of a caffeic acid 3-O-methyltransferase from Azadirachta indica fruits in the biosynthesis of ferulic acid through heterologous over-expression in Ocimum species and Withania somnifera.
Autorzy:
Narnoliya LK; Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
Sangwan N; Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India. .; Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India. .
Jadaun JS; Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.; Department of Botany, Dayanand Girls Postgraduate College, Kanpur, 208001, India.
Bansal S; Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
Sangwan RS; Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India. .; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, Uttar Pradesh, India. .
Źródło:
Planta [Planta] 2021 Jan 04; Vol. 253 (1), pp. 20. Date of Electronic Publication: 2021 Jan 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer-Verlag [etc.]
MeSH Terms:
Azadirachta*/enzymology
Fruit*/enzymology
Fruit*/genetics
Methyltransferases*/genetics
Methyltransferases*/metabolism
Ocimum*/genetics
Recombinant Proteins*/genetics
Recombinant Proteins*/metabolism
Withania*/genetics
Escherichia coli/genetics
References:
Aiman BM, Mohd-Hairul AR, Hian TS (2015) Sequence analysis of new isolated O-methyltransferase transcript (VMPOMT) from Vanda Mimi Palmer. Scholars Acad J Biosci 3:239–247. https://doi.org/10.1186/1472-6750-13-61. (PMID: 10.1186/1472-6750-13-61)
Bansal S, Narnoliya LK, Mishra B, Chandra M, Yadav RK, Sangwan NS (2018) HMG-CoA reductase from Camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems. Sci Rep 8:3547. https://doi.org/10.1038/s41598-017-17153-z. (PMID: 10.1038/s41598-017-17153-z294761165824918)
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3. (PMID: 10.1016/0003-2697(76)90527-3942051942051)
Byeon Y, Lee HY, Lee K, Back K (2014) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57:219–227. https://doi.org/10.1111/jpi.12160. (PMID: 10.1111/jpi.1216025039887)
Byeon Y, Choi GH, Lee HY, Back K (2015) Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice. J Exp Bot 66(21):6917–6925. https://doi.org/10.1093/jxb/erv396. (PMID: 10.1093/jxb/erv396262768684623696)
Chandra M, Maurya S, Sangwan NS (2020) Comparative transcriptome analysis to identify putative genes related to trichome development in Ocimum species. Mol Biol Rep 47(9):6587–6598. https://doi.org/10.1007/s11033-020-05710-1. (PMID: 10.1007/s11033-020-05710-132860161)
Frick S, Kutchan TM (1999) Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J 17:329–339. https://doi.org/10.1046/j.1365-313X.1999.00379x. (PMID: 10.1046/j.1365-313X.1999.00379x10205892)
Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E (2002) Characterization of phenyl-propene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14:505–519. https://doi.org/10.1105/tpc.010327. (PMID: 10.1105/tpc.01032711884690152928)
Janicsak G, Háznagy-Radnai E, Engel R, Blunden G, Máthé I (2013) TLC-densitometry of rosmarinic and caffeic acids in the evaluation of Lamiaceae species growing in central Europe. JPC- J Planar Chromatogr Modern TLC 26:132–136. https://doi.org/10.1556/JPC.26.2013.2.5. (PMID: 10.1556/JPC.26.2013.2.5)
Kim BG, Lee Y, Hur HG, Lim Y, Ahn JH (2006) Flavonoid 3’ -O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 67:387–394. https://doi.org/10.1016/j.phytochem.2005.11.022. (PMID: 10.1016/j.phytochem.2005.11.02216412485)
Kim J, Choi B, Cho BK, Lim HS, Kim JB, Natarajan S, Kwak E, Bae H (2013) Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus). Plant Omics 6:246.
Krishnan NM, Swetansu P, Deepak SA, Hariharan AK, Gaur P, Chaudhary R, Jain P, Vaidyanathan S, Krishna PB, Panda B (2011) De novo sequencing and assembly of Azadirachta indica fruit transcriptome. Curr Sci 101:1–12.
Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, Deepak S, Hariharan AK, Krishna PB, Nair J, Varghese L, Valivarthi NK, Dhas K, Ramaswamy K, Panda B (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics 13:464–472. https://doi.org/10.1186/1471-2164-13-464. (PMID: 10.1186/1471-2164-13-464229583313507787)
Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002. (PMID: 10.1016/j.btre.2014.09.002)
Lee HY, Byeon Y, Lee K, Lee HJ, Back K (2014) Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J Pineal Res 57:418–426. https://doi.org/10.1111/jpi.12181. (PMID: 10.1111/jpi.1218125250906)
Li HM, Rotter D, Hartman TG, Pak FE, Havkin-Frenkel D, Belanger FC (2006) Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. Plant Mol Biol 61:537–552. https://doi.org/10.1007/s11103-006-0029-4. (PMID: 10.1007/s11103-006-0029-416830185)
Li JJ, Zhang G, Yu JH, Li YY, Huang XH, Wang WJ, Liao H (2015) Molecular cloning and characterization of caffeic acid 3-O-methyltransferase from the rhizome of Ligusticum chuanxiong. Biotech Lett 37:2295–2302. https://doi.org/10.1007/s10529-015-1917-y. (PMID: 10.1007/s10529-015-1917-y)
Liu SJ, Huang YH, He CJ, Cheng FANG, Zhang YW (2016) Cloning, bioinformatics and transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase in switchgrass under abiotic stress. J Integr Agr 15:636–649. https://doi.org/10.1016/S2095-3119(16)61363-1. (PMID: 10.1016/S2095-3119(16)61363-1)
Mishra S, Sangwan RS, Bansal S, Sangwan NS (2012) Efficient transgenic plant production of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma 250:451–458. https://doi.org/10.1007/s00709-012-0428-0. (PMID: 10.1007/s00709-012-0428-022766977)
Mishra S, Bansal S, Sangwan RS, Sangwan NS (2015) Genotype independent and efficient Agrobacterium-mediated genetic transformation of the medicinal plant Withania somnifera Dunal. J Plant Biochem Biotechnol 25:191–198. https://doi.org/10.1007/s13562-015-0324-8. (PMID: 10.1007/s13562-015-0324-8)
Narnoliya LK, Rajakani R, Sangwan NS, Gupta V, Sangwan RS (2014) Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem). Mol Biol Rep 41:3147–3162. https://doi.org/10.1007/s11033-014-3174-x. (PMID: 10.1007/s11033-014-3174-x24477588)
Narnoliya LK, Kaushal G, Singh SP, Sangwan RS (2017) De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. BMC Genomics 18:74. https://doi.org/10.1186/s12864-016-3437-0. (PMID: 10.1186/s12864-016-3437-0280867835234130)
Oraby HF, Ramadan MF (2015) Impact of suppressing the caffeic acid O-methyltransferase (COMT) gene on lignin, fiber, and seed oil composition in Brassica napus transgenic plant. Eur Food Res Technol 240:931–938. https://doi.org/10.1007/s00217-014-2397-3. (PMID: 10.1007/s00217-014-2397-3)
Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269. https://doi.org/10.1002/jsfa.1873. (PMID: 10.1002/jsfa.1873)
Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) The real-time PCR encyclopedia A-Z of quantitative PCR. International University Line, La Jolla, CA, USA, pp 87–112.
Rajakani R, Narnoliya L, Sangwan NS, Sangwan RS, Gupta V (2013) Activated charcoal-mediated RNA extraction method for Azadirachta indica and plants highly rich in polyphenolics, polysaccharides and other complex secondary compounds. BMC Res Notes 6:125. https://doi.org/10.1186/1756-0500-6-125. (PMID: 10.1186/1756-0500-6-125235373383626780)
Rajakani R, Narnoliya LK, Sangwan NS, Sangwan RS, Gupta V (2014) Subtractive transcriptomes of fruit and leaf reveal differential representation of transcripts in Azadirachta indica. Tree Genet Genomes 10:1331–1351. https://doi.org/10.1007/s11295-014-0764-7. (PMID: 10.1007/s11295-014-0764-7)
Sangwan NS, Jadaun J, Tripathi S, Mishra B, Narnoliya LK, Sangwan RS (2018) Plant metabolic engineering. In Omics technology and bioengineering. Towards improving quality of life, Vol 2. Academic Press, ScienceDirect, USA. ISBN:978-0-12-815870-8. pp 143–175. https://doi.org/10.1016/B978-0-12-815870-8.00009-7.
Singh UP, Maurya S, Singh DP (2005) Phenolic acids in neem (Azadirachta indica) a major pre-existing secondary metabolites. J Herb Pharmacother 5:35–43. https://doi.org/10.1080/J157v05n01_05. (PMID: 10.1080/J157v05n01_0516093234)
Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92–100. (PMID: 10.3164/jcbn.40.92)
Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, Mockler TC, Sarath G, Hazen SP (2013) Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol 13:61. https://doi.org/10.1186/1472-6750-13-61. (PMID: 10.1186/1472-6750-13-61239027933734214)
Wang J, Pichersky E (1998) Characterization of s-adenosyl-l-methionine:(iso) eugenolo-methyltransferase involved in floral scent production in Clarkia breweri. Arch Biochem Biophys 349(1):153–160. (PMID: 10.1006/abbi.1997.0452)
Wiens B, De Luca V (2016) Molecular and biochemical characterization of a benzenoid/phenylpropanoid meta/para-O-methyltransferase from Rauwolfia serpentina roots. Phytochemisty 132:5–15. https://doi.org/10.1016/j.phytochem.2016.10.004. (PMID: 10.1016/j.phytochem.2016.10.004)
Yoshihara N, Fukuchi-Mizutani M, Okuhara H, Tanaka Y, Yabuya T (2008) Molecular cloning and characterization of O-methyltransferases from the flower buds of Iris hollandica. J Plant Physiol 165:415–422. https://doi.org/10.1016/j.jplph.2006.12.002. (PMID: 10.1016/j.jplph.2006.12.00217383769)
Zubieta C, Kota P, Ferrer JL, Dixon RA, Noel JP (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14:1265–1277. https://doi.org/10.1105/tpc.001412. (PMID: 10.1105/tpc.00141212084826150779)
Grant Information:
BSC-203 Central Institute of Medicinal and Aromatic Plants
Contributed Indexing:
Keywords: Ashwagandha; Azadirachta indica; Caffeic 3-O-methyltransferase; Caffeic acid; Ferulic acid; Neem; Ocimum species; Withania somnifera
Substance Nomenclature:
0 (Recombinant Proteins)
EC 2.1.1.- (Methyltransferases)
EC 2.1.1.68 (caffeate O-methyltransferase)
Entry Date(s):
Date Created: 20210105 Date Completed: 20210324 Latest Revision: 20220419
Update Code:
20240105
DOI:
10.1007/s00425-020-03514-y
PMID:
33398404
Czasopismo naukowe
Main Conclusion: The recombinant caffeic acid 3-O-methyltransferase gene has been cloned and characterized from Neem. The gene is involved in ferulic acid biosynthesis, a key intermediate component of lignin biosynthesis. Azadirachta indica (Neem) is a highly reputed traditional medicinal plant and is phytochemically well-known for its limonoids. Besides limonoids, phenolics are also distinctively present, which add more medicinal attributes to Neem. Caffeic acid is one of such phenolic compound and it can be converted enzymatically into another bioactive phytomolecule, ferulic acid. This conversion requires transfer of a methyl group from a donor to caffeic acid under the catalytic action of an appropriate methyltransferase. In this study, caffeic acid 3-O-methyltransferase gene from Neem (NCOMT) fruits has been isolated and heterologously expressed in E. coli. The recombinant NCOMT enzyme was purified, which exhibited efficient catalytic conversion of caffeic acid into ferulic acid, a highly potential pharmaceutical compound. The purified recombinant enzyme was physico-kinetically characterized for its catalysis. The analysis of tissue-wide expression of NCOMT gene revealed interesting pattern of transcript abundance reflecting its role in the development of fruit tissues. Further, NCOMT was heterologously overexpressed in Withania somnifera and Ocimum species, to analyze its role in ferulic acid biosynthesis in planta. Thus, the study provides insight for the endogenous role of NCOMT in ferulic acid biosynthesis en route to lignin, an important structural component. To the best of our knowledge, NCOMT pertains to be the first enzyme of the secondary metabolism that has been purified and kinetically characterized from Neem. This study may also have important prospects of applications as the observation on heterologous expression of NCOMT showed its involvement in the maintenance of the in vivo pool of ferulic acid in the plants. Thus, the study involving NCOMT opens up new dimensions of metabolic engineering approaches for the biosynthesis of potential therapeutically important phytomolecules in heterologous systems.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies