Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

[Pediatric bone marrow alterations].

Tytuł:
[Pediatric bone marrow alterations].
Autorzy:
Berg S; Kinderradiologie, Universitätsklinik Freiburg, Mathildenstraße 1, 79106, Freiburg, Deutschland. .
Transliterated Title:
Knochenmarkveränderungen am kindlichen Skelett.
Źródło:
Der Radiologe [Radiologe] 2021 Jan; Vol. 61 (1), pp. 87-108.
Typ publikacji:
Journal Article
Język:
German
Imprint Name(s):
Original Publication: Berlin : Springer Verlag
MeSH Terms:
Bone Marrow*/diagnostic imaging
Bone Marrow*/pathology
Magnetic Resonance Imaging*
Child ; Humans
References:
Nixon GW (1978) Hematogenous osteomyelitis of metaphyseal-equivalent locations. AJR Am J Roentgenol 130(1):123–129. https://doi.org/10.2214/ajr.130.1.123. (PMID: 10.2214/ajr.130.1.123413397)
Kricun ME (1985) Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skelet Radiol 14(1):10–19. https://doi.org/10.1007/BF00361188. (PMID: 10.1007/BF00361188)
Jaramillo D (2011) Infection: musculoskeletal. Pediatr Radiol 41(Suppl 1):S127–S134. https://doi.org/10.1007/s00247-011-2001-y. (PMID: 10.1007/s00247-011-2001-y21523583)
Del Grande F, Tatizawa-Shiga N, Jalali Farahani S, Chalian M, Fayad LM (2014) Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor. Quant Imaging Med Surg 4(3):173–180. https://doi.org/10.3978/j.issn.2223-4292.2014.05.01. (PMID: 10.3978/j.issn.2223-4292.2014.05.01249144184032920)
Uhl M, Saueressig U, Koehler G et al (2006) Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol 36(12):1306–1311. https://doi.org/10.1007/s00247-006-0324-x. (PMID: 10.1007/s00247-006-0324-x17031633)
Kapp FG, Perlin JR, Hagedorn EJ et al (2018) Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature 558(7710):445–448. https://doi.org/10.1038/s41586-018-0213-0. (PMID: 10.1038/s41586-018-0213-0298994486093292)
Moore SG, Dawson KL (1990) Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 175(1):219–223. https://doi.org/10.1148/radiology.175.1.2315484. (PMID: 10.1148/radiology.175.1.23154842315484)
Weishaupt D, Schweitzer ME (2002) MR imaging of the foot and ankle: patterns of bone marrow signal abnormalities. Eur Radiol 12(2):416–426. https://doi.org/10.1007/s003300101070 (PMID: 11870444). (PMID: 10.1007/s00330010107011870444)
Carroll KW, Feller JF, Tirman PF (1997) Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 7(2):394–398. https://doi.org/10.1002/jmri.1880070224. (PMID: 10.1002/jmri.18800702249090597)
Zbojniewicz AM, Laor T (2011) Focal Periphyseal Edema (FOPE) zone on MRI of the adolescent knee: a potentially painful manifestation of physiologic physeal fusion? AJR Am J Roentgenol 197(4):998–1004. https://doi.org/10.2214/AJR.10.6243. (PMID: 10.2214/AJR.10.624321940591)
Schweitzer ME, White LM (1996) Does altered biomechanics cause marrow edema? Radiology 198(3):851–853. https://doi.org/10.1148/radiology.198.3.8628882. (PMID: 10.1148/radiology.198.3.86288828628882)
Patel NM, Mai DH, Ramme AJ, Karamitopoulos MS, Castañeda P, Chu A (2019) Is the incidence of paediatric stress fractures on the rise? Trends in New York State from 2000 to 2015. J Pediatr Orthop B. https://doi.org/10.1097/BPB.0000000000000650. (PMID: 10.1097/BPB.000000000000065031356502)
Fischer W (2019) Perspective on idiopathic subchondral, osteochondral, and chondral lesions with emphasis on the knee. Semin Musculoskelet Radiol 23(5):534–546. https://doi.org/10.1055/s-0039-1693978. (PMID: 10.1055/s-0039-169397831556088)
Weissmann R, Uziel Y (2016) Pediatric complex regional pain syndrome: a review. Pediatr Rheumatol Online J 14(1):29–29. https://doi.org/10.1186/s12969-016-0090-8. (PMID: 10.1186/s12969-016-0090-8271302114850724)
Imhof H, Breitenseher M, Trattnig S et al (1997) Imaging of avascular necrosis of bone. Eur Radiol 7(2):180–186. https://doi.org/10.1007/s003300050131. (PMID: 10.1007/s0033000501319038111)
Tang YM, Jeavons S, Stuckey S, Middleton H, Gill D (2007) MRI features of bone marrow necrosis. AJR Am J Roentgenol 188(2):509–514. https://doi.org/10.2214/AJR.05.0656. (PMID: 10.2214/AJR.05.065617242262)
Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME (2002) Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum 32(2):94–124. (PMID: 10.1053/sarh.2002.33724b)
Zeng F, Nogami M, Shirai T, Zen Y, Murakami T (2018) Diffusion-weighted imaging shows a false-negative finding for bone marrow involvement on 18F-FDG PET/MRI in a patient with malignant lymphoma after blood transfusion. Clin Nucl Med 43(5):361–362. https://doi.org/10.1097/RLU.0000000000002052. (PMID: 10.1097/RLU.000000000000205229561522)
Maximova N, Gregori M, Boz G et al (2017) MRI-based evaluation of multiorgan iron overload is a predictor of adverse outcomes in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation. Oncotarget 8(45):79650–79661. https://doi.org/10.18632/oncotarget.19021. (PMID: 10.18632/oncotarget.19021291083455668078)
Ceroni D, Belaieff W, Cherkaoui A et al (2014) Primary epiphyseal or apophyseal subacute osteomyelitis in the pediatric population: a report of fourteen cases and a systematic review of the literature. J Bone Joint Surg Am 96(18):1570–1575. https://doi.org/10.2106/JBJS.M.00791. (PMID: 10.2106/JBJS.M.0079125232082)
Lee KY (2014) Comparison of pyogenic spondylitis and tuberculous spondylitis. Asian Spine J 8(2):216–223. https://doi.org/10.4184/asj.2014.8.2.216. (PMID: 10.4184/asj.2014.8.2.216247612073996349)
Uhl M (2008) Osteomyelitis. In: Uhl M, Herget G (Hrsg) Radiologische Diagnostik von Knochentumoren. Thieme, Stuttgart, S 151–155.
D’Adamo AP, Bianco AM, Ferrara G, La Bianca M, Insalaco A, Tommasini A, Pardeo M, Cattalini M, La Torre F, Finetti M, Alizzi C, Simonini G, Messia V, Pastore S, Cimaz R, Gattorno M, Taddio A (2020) High prevalence of rare FBLIM1 gene variants in an Italian cohort of patients with Chronic Non-bacterial Osteomyelitis (CNO). Pediatr Rheumatol Online J 18(1):55–10. https://doi.org/10.1186/s12969-020-00447-4 (Italian Pediatric Rheumatology Study Group). (PMID: 10.1186/s12969-020-00447-4326507897350626)
Sato TS, Watal P, Ferguson PJ (2020) Imaging mimics of chronic recurrent multifocal osteomyelitis: avoiding pitfalls in a diagnosis of exclusion. Pediatr Radiol 50(1):124–136. https://doi.org/10.1007/s00247-019-04510-5. (PMID: 10.1007/s00247-019-04510-531901992)
De Alava E, Gerald WL (2000) Molecular biology of the Ewing’s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol 18(1):204–213. https://doi.org/10.1200/JCO.2000.18.1.204. (PMID: 10.1200/JCO.2000.18.1.20410623711)
Uhl M (2008) Osteomyelitis. In: Uhl M, Herget G (Hrsg) Radiologische Diagnostik von Knochentumoren. Thieme, Stuttgart, S 22.
Allen CE, Beverley PCL, Collin M et al (2020) The coming of age of Langerhans cell histiocytosis. Nat Immunol 21(1):1–7. https://doi.org/10.1038/s41590-019-0558-z. (PMID: 10.1038/s41590-019-0558-z31831887)
Lehrnbecher T, Minkov M (2018) Langerhans-Zell-Histiozytose. In: Niemeyer C, Eggert A et al (Hrsg) Pädiatrische Hämatologie und Onkologie. Springer, Berlin, Heidelberg, New York, S 94–99.
McCarten KM, Nadel HR, Shulkin BL, Cho SY (2019) Imaging for diagnosis, staging and response assessment of Hodgkin lymphoma and non-Hodgkin lymphoma. Pediatr Radiol 49(11):1545–1564. https://doi.org/10.1007/s00247-019-04529-8. (PMID: 10.1007/s00247-019-04529-831620854)
Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG (1993) Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology 188(1):249–252. https://doi.org/10.1148/radiology.188.1.8511306. (PMID: 10.1148/radiology.188.1.85113068511306)
Contributed Indexing:
Keywords: Hematopoiesis; Langerhans-cell histiocytosis; Leukemia; Lymphoma; Osteomyelitis
Local Abstract: [Publisher, German] Die altersabhängige Entwicklung des Knochenmarks folgt einem konstanten Muster und hat Einfluss auf die Lokalisation und die Morphologie von verschiedenen Knochenmarkprozessen. Physiologische, reaktive und gutartige Knochenmarkveränderungen müssen von entzündlichen oder malignen Infiltraten abgegrenzt werden. Eine unterschiedliche Altersprävalenz und morphologische Charakteristika in der Magnetresonanztomographie(MRT)-Bildgebung erlauben in vielen Fällen eine diagnostische Zuordnung. Die einzige adäquate bildgebende Methode, die Informationen über die Knochenmarkzusammensetzung liefern kann, ist die MRT.
Entry Date(s):
Date Created: 20210105 Date Completed: 20210215 Latest Revision: 20210215
Update Code:
20240105
DOI:
10.1007/s00117-020-00792-1
PMID:
33399889
Czasopismo naukowe
The age-dependent development of the bone marrow follows a constant pattern and has an impact on the localization and morphology of various bone marrow processes. Physiological, reactive and benign bone marrow alterations must be differentiated from inflammatory or malignant infiltrations. In many cases, a specific age distribution pattern and typical morphological characteristics in magnetic resonance imaging (MRI) enable a diagnostic classification. The only adequate imaging modality that can provide information about the bone marrow composition is MRI.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies