Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Biochemical changes in microalga Porphyridium cruentum associated with silver nanoparticles biosynthesis.

Tytuł :
Biochemical changes in microalga Porphyridium cruentum associated with silver nanoparticles biosynthesis.
Autorzy :
Cepoi L; Institute of Microbiology and Biotechnology, 1, Academiei Str, 2028, Chisinau, Republic of Moldova.
Rudi L; Institute of Microbiology and Biotechnology, 1, Academiei Str, 2028, Chisinau, Republic of Moldova.
Zinicovscaia I; Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890, Dubna, Russia. .; Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, Bucharest - Magurele, Romania. .
Chiriac T; Institute of Microbiology and Biotechnology, 1, Academiei Str, 2028, Chisinau, Republic of Moldova.
Miscu V; Institute of Microbiology and Biotechnology, 1, Academiei Str, 2028, Chisinau, Republic of Moldova.
Rudic V; Institute of Microbiology and Biotechnology, 1, Academiei Str, 2028, Chisinau, Republic of Moldova.
Pokaż więcej
Źródło :
Archives of microbiology [Arch Microbiol] 2021 May; Vol. 203 (4), pp. 1547-1554. Date of Electronic Publication: 2021 Jan 05.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Berlin, New York, Springer-Verlag.
MeSH Terms :
Industrial Microbiology*
Metal Nanoparticles*/chemistry
Metal Nanoparticles*/toxicity
Porphyridium*/chemistry
Porphyridium*/drug effects
Silver*/pharmacology
Biomass ; Carbohydrates/analysis ; Lipids/analysis ; Microscopy, Electron, Scanning ; Spectroscopy, Fourier Transform Infrared ; X-Ray Diffraction
References :
Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaifi MM (2019) Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J Biol Sci 26:1207–1215. (PMID: 10.1016/j.sjbs.2018.01.007)
Anandaradje A, Meyappan V, Kumar I, Sakthivel N (2020) Microbial Synthesis of Silver Nanoparticles and Their Biological Potential. In: Shukla A (ed) Nanoparticles in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8954-2_4. (PMID: 10.1007/978-981-13-8954-2_4)
Arunachalam KD, Annamalai SK, Hari S (2013) One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomed 8:1307–1315. (PMID: 10.2147/IJN.S36670)
Balintova M, Demcak S, Pagacova B (2016) A study of sorption heavy metals by natural organic sorbents. Int J Energy Environ 10:189–194.
Bermejo Roman R, Alvarez-Pez JM, Acien Fernandez FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85. (PMID: 10.1016/S0168-1656(01)00385-6)
Cepoi L, Rudi L, Chiriac T, Valuta A, Zinicovscaia I, Duca Gh, Kirkesali E, Frontasyeva M, Culicov O, Pavlov S, Bobrikov I (2015) Biochemical changes in cyanobacteria during the synthesis of silver nanoparticles. Can J Microbiol 61:13–21. (PMID: 10.1139/cjm-2014-0450)
Cepoi L, Rudi L, Miscu V, Cojocaru A, Chiriac T, Sadovnic D (2009) Antioxidative activity of ethanol extracts from Spirulina platensis and Nostoc linckia measured by various methods Analele Universității din Oradea. Fascicula Biologie 16(2):43–48.
Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102(19):8877–8884. (PMID: 10.1016/j.biortech.2011.06.078)
Chronakis IS, Madsen M (2011) Algal proteins. In: Williams PA (ed) Phillips GO. Handbook of Food Proteins, Woodhead Publishing, pp 353–394.
Degen T, Sadki M, Bron E, König U, Nénert G (2014) The high score suite. Powder Diffr 29:S13–S18. (PMID: 10.1017/S0885715614000840)
El-Naggar NA, Hussein MH, Shaaban-Dessuuki SA, Dalal SR (2020) Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep 10:3011. (PMID: 10.1038/s41598-020-59945-w)
Guibaud G, Tixier N, Bouju A, Baudu M (2003) Relation between extracellular polymer’s composition and its ability to complex Cd, Cu and Pb. Chemosphere 52:1701–1710. (PMID: 10.1016/S0045-6535(03)00355-2)
Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS (2019) Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 9:13071. (PMID: 10.1038/s41598-019-49444-y)
Hosseini-Abari A, Emtiazi G, Ghasemi SM (2013) Development of an eco-friendly approach for biogenesis of silver nanoparticles using spores of Bacillus athrophaeus. World J Microbiol Biotechnol 29:2359–2364. (PMID: 10.1007/s11274-013-1403-4)
Kashyap M, Samadhiya K, Ghosh A, Anand V, Shirage PM, Bala K (2019) Screening of microalgae for biosynthesis and optimization of Ag/AgCl nano hybrids having antibacterial effect. RSC Adv 9:25583–25591. (PMID: 10.1039/C9RA04451E)
Kathiresan S, Sarada R, Bhattacharya S, Ravishankar GA (2007) Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnol Bioeng 96:456–463. (PMID: 10.1002/bit.21138)
Kuppusamy P, Yusoff MM, Pragas Maniam G, Govindan N (2016) Biosynthesis of metallic nanoparticle s using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm J 24:473–484. (PMID: 10.1016/j.jsps.2014.11.013)
Majumdar SS, Das SK, Saha T, Panda GC, Bandyopadhyoy T, Guha AK (2008) Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Coll Surf B Biointerfaces 63:138–145. (PMID: 10.1016/j.colsurfb.2007.11.022)
Patel V, Berthold D, Puranik P, Ganta M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–211. (PMID: 10.1016/j.btre.2014.12.001)
Pouya MR, Behnam S (2017) Adsorption behavior of copper ions on alga Jania adhaerens through SEM and FTIR analyses. Sep Sci Technol 52(13):2062–2068. (PMID: 10.1080/01496395.2017.1324492)
Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Coll Surf B Biointerfaces 82:152–159. (PMID: 10.1016/j.colsurfb.2010.08.036)
Raja S, Ramesh V, Thivaharan V (2017) Green biosynthesi s of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem 10:253–261. (PMID: 10.1016/j.arabjc.2015.06.023)
Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. (PMID: 10.1107/S0021889869006558)
Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504. (PMID: 10.1016/j.biortech.2008.05.048)
Sathishkumar RS, Sundaramanickam A, Srinath R, Ramesh T, Saranya K, Meena M, Surya P (2019) Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J Saudi Chem Soc 23:1180–1191. (PMID: 10.1016/j.jscs.2019.07.008)
Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14. (PMID: 10.1186/s12951-018-0334-5)
Sosa O, Noguez C, Barrera PG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275. (PMID: 10.1021/jp0274076)
Sun L, Wang C, Shi Q, Ma C (2009) Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int J Biol Macromol 45:42–47. (PMID: 10.1016/j.ijbiomac.2009.03.013)
Spagnoletti FN, Spedalieri C, Kronberg F, Giacometti R (2019) Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J Environ Manage 231:457–466. (PMID: 10.1016/j.jenvman.2018.10.081)
Wahab MA, Jellali S, Jedidi N (2010) Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour Technol 101(14):5070–5075. (PMID: 10.1016/j.biortech.2010.01.121)
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H (2020) Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10:8996–9031. (PMID: 10.7150/thno.45413)
Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, Zheng S (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80(3):285–290. (PMID: 10.1002/jctb.1191)
Zinicovscaia I, Rudi L, Valuta A, Cepoi L, Vergel K, Frontasyeva M, Safonov A, Wells M, Grozdov D (2016a) Biochemical changes in Nostoc linckia associated with selenium nanoparticles biosynthesis. Ecol Chem Eng S 23:559–569.
Zinicovscaia I, Chiriac T, Cepoi L, Rudi L, Culicov O, Frontasyeva M, Rudic V (2016b) Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles. Canad J Microbiol 63:27–34. (PMID: 10.1139/cjm-2016-0339)
Contributed Indexing :
Keywords: Biochemical analysis; Nanoparticles; Porphyridium cruentum; Silver
Substance Nomenclature :
0 (Carbohydrates)
0 (Lipids)
3M4G523W1G (Silver)
Entry Date(s) :
Date Created: 20210105 Date Completed: 20210507 Latest Revision: 20210507
Update Code :
20210508
DOI :
10.1007/s00203-020-02143-z
PMID :
33399893
Czasopismo naukowe
For the first time, the microalga Porphyridium cruentum was tested for its ability to produce silver nanoparticles. To characterize formed silver nanoparticles UV-vis Spectrometry, Scanning Electron Microscopy, Energy-dispersive analysis of X-rays and X-ray diffraction were used. It was shown that after biomass exposure to silver nitrate solution the extracellular formation of spherical-like nanoparticles took place. Functional groups responsible for metal binding were determined by Fourier-transform infrared spectroscopy. The complex of biochemical tests was used for biomass characterization and assessment of the changes of its main components (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation. Obtained data indicate a significant decrease of proteins, carbohydrates, phycobiliproteins, and lipids content as well as antiradical activity of biomass. The obtained results show the necessity of determination of optimal conditions for obtaining Porphyridium cruentum biomass enriched with silver nanoparticles for its further application in the pharmaceuticals industry.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies