Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal.

Tytuł:
The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal.
Autorzy:
Sloan MA; Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
Sadlova J; Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
Lestinova T; Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
Sanders MJ; The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK.
Cotton JA; The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK.
Volf P; Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
Ligoxygakis P; Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK. .
Źródło:
Parasites & vectors [Parasit Vectors] 2021 Jan 06; Vol. 14 (1), pp. 15. Date of Electronic Publication: 2021 Jan 06.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central
MeSH Terms:
Gene Expression Profiling*
Trypanosomatina*
Phlebotomus/*parasitology
Animals ; Blood/parasitology ; Feeding Behavior ; Humans ; Insect Vectors/metabolism ; Insect Vectors/parasitology ; Leishmania infantum ; Leishmania major ; Leishmaniasis/parasitology ; Leishmaniasis/transmission ; Phlebotomus/metabolism
References:
Courtenay O, Peters NC, Rogers ME, Bern C. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control. PLoS Pathog. 2017;13:e1006571. (PMID: 29049371564825410.1371/journal.ppat.1006571)
Sundar S, Singh OP, Chakravarty J. Visceral leishmaniasis elimination targets in India, strategies for preventing resurgence. Expert Rev Anti Infect Ther. 2018;16:805–12. (PMID: 30289007634564610.1080/14787210.2018.1532790)
Ponte-Sucre A, Gamarro F, Dujardin J-C, Barrett MP, Lopez-Velez R, Garcia-Hernandez R, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis. 2017;11:e0006052. (PMID: 29240765573010310.1371/journal.pntd.0006052)
Basselin M, Denise H, Coombs GH, Barrett MP. Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother. 2002;46:3731–8. (PMID: 1243566913279110.1128/AAC.46.12.3731-3738.2002)
Hassan MM, Widaa SO, Osman OM, Numiary MSM, Ibrahim MA, Abushama HM. Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State Sudan. Parasites Vectors. 2012;5:46. (PMID: 22397726331479710.1186/1756-3305-5-46)
Dhiman RC, Yadav RS. Insecticide resistance in phlebotomine sandflies in Southeast Asia with emphasis on the Indian subcontinent. Infect Dis Poverty. 2016;5:106. (PMID: 27817749509827710.1186/s40249-016-0200-3)
Fawaz EY, Zayed AB, Fahmy NT, Villinski JT, Hoel DF, Diclaro JW. Pyrethroid insecticide resistance mechanisms in the adult Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol. 2016;53:620–8. (PMID: 2681073110.1093/jme/tjv256)
Abrudan J, Ramalho-Ortigão M, O’Neil S, Stayback G, Wadsworth M, Bernard M, et al. The characterization of the Phlebotomus papatasi transcriptome. Insect Mol Biol. 2013;22:211–32. (PMID: 23398403359450310.1111/imb.12015)
Dillon RJ, Lane RP. Influence of Leishmania infection on blood-meal digestion in the sandflies Phlebotomus papatasi and P. langeroni. Parasitol Res. 1993;79:492–6. (PMID: 841556510.1007/BF00931590)
Dostálová A, Votýpka J, Favreau AJ, Barbian KD, Volf P, Valenzuela JG, et al. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies. BMC Genomics. 2011;12:223. (PMID: 21569254310781410.1186/1471-2164-12-223)
Wang L, Sloan MA, Ligoxygakis P. Intestinal NF-κB and STAT signalling is important for uptake and clearance in a Drosophila–Herpetomonas interaction model. PLoS Genet. 2019;15:e1007931. (PMID: 30822306641586710.1371/journal.pgen.1007931)
Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet. 2019;15:e1008452. (PMID: 31710597687217110.1371/journal.pgen.1008452)
Inbar E, Hughitt VK, Dillon LAL, Ghosh K, El-Sayed NM, Sacks DL. The transcriptome of Leishmania major developmental stages in their natural sand fly vector. mBio. 2017;8:e00029-17. (PMID: 28377524538083710.1128/mBio.00029-17)
Dostálová A, Volf P. Leishmania development in sand flies: parasite–vector interactions overview. Parasites Vectors. 2012;5:276. (PMID: 23206339353392210.1186/1756-3305-5-276)
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36(Suppl 1):S1-9. (PMID: 2136676010.1111/j.1948-7134.2011.00106.x)
Pruzinova K, Sadlova J, Seblova V, Homola M, Votypka J, Volf P. Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PLoS ONE. 2015;10:e0128203. (PMID: 26030610445218710.1371/journal.pone.0128203)
Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 2015;43:D707–13. (PMID: 2551049910.1093/nar/gku1117)
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357. (PMID: 25751142465581710.1038/nmeth.3317)
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562. (PMID: 22383036333432110.1038/nprot.2012.016)
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. (PMID: 2422767710.1093/bioinformatics/btt65624227677)
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. (PMID: 25516281430204910.1186/s13059-014-0550-8)
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative Genomics Viewer. Nat Biotechnol. 2011;29:24–6. (PMID: 21221095334618210.1038/nbt.1754)
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Dimon MT, Marinotti O, et al. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species Aedes aegypti. BMC Genomics. 2011;12:82. (PMID: 21276245304241210.1186/1471-2164-12-82)
Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMC, James AA. Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol. 2006;15:1–12. (PMID: 1646906310.1111/j.1365-2583.2006.00610.x16469063)
Greenberg L, Hatini V. Systematic expression and loss-of-function analysis defines spatially restricted requirements for Drosophila RhoGEFs and RhoGAPs in leg morphogenesis. Mech Dev. 2011;128:5–17. (PMID: 2085118210.1016/j.mod.2010.09.00120851182)
Kim SH, Lee Y, Akitake B, Woodward OM, Guggino WB, Montell C. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc Natl Acad Sci USA. 2010;107:8440 LP – 8445. (PMID: 10.1073/pnas.1001425107)
Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008;454:217–20. (PMID: 18548007273088810.1038/nature07001)
Du EJ, Ahn TJ, Kwon I, Lee JH, Park J-H, Park SH, et al. TrpA1 Regulates defecation of food-borne pathogens under the control of the Duox pathway. PLoS Genet. 2016;12:e1005773. (PMID: 26726767469973710.1371/journal.pgen.1005773)
Ramalho-Ortigão M, Jochim RC, Anderson JM, Lawyer PG, Pham V-M, Kamhawi S, et al. Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania-major-infected sandflies. BMC Genomics. 2007;8:300. (PMID: 17760985203459710.1186/1471-2164-8-300)
Ramalho-Ortigao M, Kamhawi S, Rowton E, Ribeiro JMC, Valenzuela J. Cloning and characterization of trypsin and chymotrypsin-like proteases from the midgut of the sandfly vector Phlebotomus papatasi. Insect Biochem Mol Biol. 2003;33:163–71. (PMID: 1253567510.1016/S0965-1748(02)00187-X)
Buchon N, Poidevin M, Kwon H-M, Guillou A, Sottas V, Lee B-L, et al. A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc Natl Acad Sci USA. 2009;106:12442–7. (PMID: 19590012271833710.1073/pnas.0901924106)
An C, Zhang M, Chu Y, Zhao Z. Serine protease MP2 activates prophenoloxidase in the melanization immune response of Drosophila melanogaster. PLoS ONE. 2013;8:e79533–e79533. (PMID: 24260243382984510.1371/journal.pone.0079533)
Yassine H, Kamareddine L, Chamat S, Christophides GK, Osta MA. A serine protease homolog negatively regulates TEP1 consumption in systemic infections of the malaria vector Anopheles gambiae. J Innate Immun. 2014;6:806–18. (PMID: 25012124481375510.1159/000363296)
Kan H, Kim C-H, Kwon H-M, Park J-W, Roh K-B, Lee H, et al. Molecular control of phenoloxidase-induced melanin synthesis in an insect. J Biol Chem. 2008;283:25316–23. (PMID: 1862820510.1074/jbc.M804364200)
Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M. Characterization of Phlebotomus papatasi Peritrophins, and the role of PpPer1 in Leishmania major survival in its natural vector. PLoS Negl Trop Dis. 2013;7:e2132. (PMID: 23516661359747310.1371/journal.pntd.0002132)
Jochim RC, Teixeira CR, Laughinghouse A, Mu J, Oliveira F, Gomes RB, et al. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics. 2008;9:15. (PMID: 18194529224957510.1186/1471-2164-9-15)
Javed MA, Coutu C, Theilmann DA, Erlandson MA, Hegedus DD. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles. Insect Sci. 2019;26:424–40. (PMID: 2906463310.1111/1744-7917.12547)
Telleria EL, SantAnna MRV, Ortigão-Farias JR, Pitaluga AN, Dillon VM, Bates PA, et al. Caspar-like gene depletion reduces leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem. 2012;287:12985–93. (PMID: 22375009333995410.1074/jbc.M111.331561)
Tinoco-Nunes B, Telleria EL, da Silva-Neves M, Marques C, Azevedo-Brito DA, Pitaluga AN, et al. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasit Vectors. 2016;9:222. (PMID: 27098567483907810.1186/s13071-016-1507-4)
Boulanger N, Bulet P, Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends Parasitol. 2006;22:262–8. (PMID: 1663558710.1016/j.pt.2006.04.003)
Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L, et al. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun. 2004;72:7140–6. (PMID: 1555763852917310.1128/IAI.72.12.7140-7146.2004)
Hu C, Aksoy S. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol. 2006;60:1194–204. (PMID: 1668979510.1111/j.1365-2958.2006.05180.x)
Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, et al. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev Cell. 2009;16:386–97. (PMID: 1928908410.1016/j.devcel.2008.12.015)
Myllymaki H, Ramet M. JAK/STAT pathway in Drosophila immunity. Scand J Immunol. 2014;79:377–85. (PMID: 2467317410.1111/sji.12170)
Benoit JB, Denlinger DL. Bugs battle stress from hot blood. Elife. 2017;6:e33035. (PMID: 29157360569792810.7554/eLife.33035)
Lehane MJ, Lehane MJ, Lehane MJ. The biology of blood-sucking in insects. Cambridge: Cambridge University Press; 2005. (PMID: 10.1017/CBO9780511610493)
Beyenbach KW, Piermarini PM. Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito Aedes aegypti. Acta Physiol. 2011;202:387–407. (PMID: 10.1111/j.1748-1716.2010.02195.x)
Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The dose makes the poison: nutritional overload determines the life traits of blood-feeding arthropods. Trends Parasitol. 2017;33:633–44. (PMID: 2854957310.1016/j.pt.2017.04.008)
Wang Y, Gilbreath TM III, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011;6:e24767. (PMID: 21957459317782510.1371/journal.pone.0024767)
Volf P, Kiewegova A, Nemec A. Bacterial colonisation in the gut of Phlebotomus duboseqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitol (Praha). 2002;49:73–7. (PMID: 1199355410.14411/fp.2002.01411993554)
Lahondere C, Insausti TC, Paim RMM, Luan X, Belev G, Pereira MH, et al. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs. Elife. 2017;6:e26107. (PMID: 29157359569793410.7554/eLife.26107)
Lahondère C, Lazzari CR. Thermal effect of blood feeding in the telmophagous fly Glossina morsitans morsitans. J Therm Biol. 2015;48:45–50. (PMID: 2566062910.1016/j.jtherbio.2014.12.00925660629)
Upton LM, Povelones M, Christophides GK. Anopheles gambiae blood feeding initiates an anticipatory defense response to Plasmodium berghei. J Innate Immun. 2015;7:74–86. (PMID: 2524788310.1159/00036533125247883)
Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, et al. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. MBio. 2017;8:e01121-e1216. (PMID: 28096483524139410.1128/mBio.01121-16)
Coutinho-Abreu IV, Serafim TD, Meneses C, Kamhawi S, Oliveira F, Valenzuela JG. Leishmania infection induces a limited differential gene expression in the sand fly midgut. BMC Genomics. 2020;21:608. (PMID: 32887545748771710.1186/s12864-020-07025-8)
Grant Information:
United Kingdom WT_ Wellcome Trust; BB/K003569 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; 31012 H2020 European Research Council
Entry Date(s):
Date Created: 20210107 Date Completed: 20210511 Latest Revision: 20211005
Update Code:
20240105
PubMed Central ID:
PMC7789365
DOI:
10.1186/s13071-020-04498-0
PMID:
33407867
Czasopismo naukowe
Background: Leishmaniasis, caused by parasites of the genus Leishmania, is a disease that affects up to 8 million people worldwide. Parasites are transmitted to human and animal hosts through the bite of an infected sand fly. Novel strategies for disease control require a better understanding of the key step for transmission, namely the establishment of infection inside the fly.
Methods: The aim of this work was to identify sand fly systemic transcriptomic signatures associated with Leishmania infection. We used next generation sequencing to describe the transcriptome of whole Phlebotomus papatasi sand flies when fed with blood alone (control) or with blood containing one of three trypanosomatids: Leishmania major, L. donovani and Herpetomonas muscarum, the latter being a parasite not transmitted to humans.
Results: Of the trypanosomatids studied, only L. major was able to successfully establish an infection in the host P. papatasi. However, the transcriptional signatures observed after each parasite-contaminated blood meal were not specific to success or failure of a specific infection and they did not differ from each other. The transcriptional signatures were also indistinguishable after a non-contaminated blood meal.
Conclusions: The results imply that sand flies perceive Leishmania as just one feature of their microbiome landscape and that any strategy to tackle transmission should focus on the response towards the blood meal rather than parasite establishment. Alternatively, Leishmania could suppress host responses. These results will generate new thinking around the concept of stopping transmission by controlling the parasite inside the insect.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies