Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Mercury in neonatal and juvenile blacktip sharks (Carcharhinus limbatus). Part I: exposure assessment.

Tytuł :
Mercury in neonatal and juvenile blacktip sharks (Carcharhinus limbatus). Part I: exposure assessment.
Autorzy :
Reistad NA; Florida Gulf Coast University, 10501 FGCU Blvd. South., Fort Myers, FL, 33965, USA. .
Norris SB; Florida Gulf Coast University, 10501 FGCU Blvd. South., Fort Myers, FL, 33965, USA.
Rumbold DG; Florida Gulf Coast University, 10501 FGCU Blvd. South., Fort Myers, FL, 33965, USA.
Pokaż więcej
Źródło :
Ecotoxicology (London, England) [Ecotoxicology] 2021 Mar; Vol. 30 (2), pp. 187-197. Date of Electronic Publication: 2021 Jan 08.
Typ publikacji :
Journal Article
Język :
Imprint Name(s) :
Publication: 1999- : Boston : Kluwer Academic Publishers
Original Publication: London : Chapman & Hall,
MeSH Terms :
Animals ; Estuaries ; Florida ; Humans ; Infant, Newborn ; Muscles/chemistry
References :
Adams DH, McMichael RH Jr. (1999) Mercury levels in four species of sharks from the Atlantic coast of Florida. Fish Bull 97(2):372–379.
Adams DH, McMichael RH Jr. Henderson GE (2003) Mercury levels in marine and estuarine fishes of Florida 1989–2001. Florida Marine Research Institute Technical Reports, 2nd ed. rev. p 57.
Basu N (2015) Applications and implications of neurochemical biomarkers in environmental toxicology. Environ Toxicol Chem 34(1):22–29.
Bergés-Tiznado ME, Márquez-Farías F, Lara-Mendoza RE, Torres-Rojas YE, Galván-Magaña F, Bojórquez-Leyva H, Páez-Osuna F (2015) Mercury and selenium in muscle and target organs of scalloped hammerhead sharks Sphyrna lewini of the SE Gulf of California: dietary intake, molar ratios, loads, and human health risks. Arch Environ Contam Toxicol 69(4):440–452.
Bethea DM, Buckel JA, Carlson JK (2004) Foraging ecology of the early life stages of four sympatric shark species. Mar Ecol Prog Ser 268:245–264.
Brown L (1993) Anesthesia and restraint. Fish medicine. Philadelphia: WB Saunders, 81.
Brumbaugh WG, Krabbenhoft DP, Helsel DR, Wiener JG, Echols KR (2001) A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients: bioaccumulation in fish. Biol Sci Rep 9.
Castro JI (1996) Biology of the blacktip shark, Carcharhinus limbatus, off the southeastern United States. Bull Mar Sci 59(3):508–522.
Cizdziel J, Hinners T, Cross C, Pollard J (2003) Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. J Environ Monit 5(5):802–807.
Compagno L (1984) Sharks of the world: an annotated and illustrated catalogue of shark species known to date: Vol 4, Part 2 Carchariniformes. Food and Agricultural Organization, United Nations, Rome.
Compeau G, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50(2):498–502.
Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56(5):707–717.
Delshad ST, Mousavi SA, Islami H, Pazira A (2012) Mercury concentration of the whitecheek shark, Carcharhinus dussumieri (Elasmobranchii, Chondrichthyes), and its relation with length and sex. Pan-Am J Aquat Sci 7:135–142.
Devlin EW (2006) Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicology 15(1):97–110.
Dong W, Liu J, Wei L, Jingfeng Y, Chernick M, Hinton DE (2016) Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. PeerJ 4:e2282.
Dudley S, Cliff G (1993) Sharks caught in the protective gill nets off Natal, South Africa. 7. The blacktip shark Carcharhinus limbatus (Valenciennes). South Afr J Mar Sci 13(1):237–254.
Dulvy NK, et al. (2014) Extinction risk and conservation of the world’s sharks and rays. Elife, 3.
Ehnert-Russo S, Gelsleichter J (2019) Mercury accumulation and effects in the brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). Arch Environ Contam Toxicol 1–17.
Fjeld E, Haugen T, Vøllestad L (1998) Permanent impairment in the feeding behavior of grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. Sci Total Environ 213(1–3):247–254.
Florida Department of Health (2018) Advisory brochure. Your guide to eating fish caught in Florida (March 2018).
Hall B, Bodaly R, Fudge R, Rudd J, Rosenberg D (1997) Food as the dominant pathway of methylmercury uptake by fish. Water, Air Soil Pollut 100(1–2):13–24.
Harris R et al. (2012) Mercury in the Gulf of Mexico: sources to receptors. Environ Res 119:42–52.
Heyes A, Mason RP, Kim EH, Sunderland E (2006) Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes. Mar Chem 102(1–2):134–147.
Hueter RE, Manire CA (1994) Bycatch and catch-release mortality of small sharks in the Gulf coast nursery grounds of Tampa Bay and Charlotte Harbor. Mote Marine Laboratory, Sarasota, FL, p 183.
Hueter RE, Fong WG, Henderson G, French MF, Manire CA (1995) Methylmercury concentration in shark muscle by species, size and distribution of sharks in Florida coastal waters. Mercury as a global pollutant (pp 893–899): Springer.
Hueter RE, Tyminski JP (2002) US shark nursery research overview, Center for Shark Research, Mote Marine Laboratory 1991–2001.
Hurtado-Banda R, Gomez-Alvarez A, Márquez-Farías JF, Cordoba-Figueroa M, Navarro-García G, Medina-Juárez LÁ (2012) Total mercury in liver and muscle tissue of two coastal sharks from the northwest of Mexico. Bull Environ Contam Toxicol 88(6):971–975.
Kidd K, Clayden M, Jardine T (2012) Bioaccumulation and biomagnification of mercury through food webs. In G Liu, Y Cai, & N O’Driscoll (Eds), Environmental chemistry and toxicology of mercury, John Wiley & Sons Inc, 455–499.
Lyons K, Carlisle A, Preti A, Mull C, Blasius M, O’Sullivan J, Winkler C, Lowe CG (2013a) Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks. Mar Environ Res 90:27–38.
Lyons K, Lowe CG, Gillanders B (2013b) Mechanisms of maternal transfer of organochlorine contaminants and mercury in the common thresher shark (Alopias vulpinus). Can J Fish Aquat Sci 70(12):1667–1672.
Mason RP, Fitzgerald WF, Morel FM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58(15):3191–3198.
Matta MB, Linse J, Cairncross C, Francendese L, Kocan RM (2001) Reproductive and transgenerational effects of methylmercury or Aroclor 1268 on Fundulus heteroclitus. Environ Toxicol Chem 20(2):327–335.
Matulik AG, Kerstetter DW, Hammerschlag N, Divoll T, Hammerschmidt CR, Evers DC (2017) Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar Pollut Bull 116(1):357–364.
Moye HA, Miles CJ, Phlips EJ, Sargent B, Merritt KK (2002) Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environ Sci Technol 36(16):3550–3555.
Nam DH, Adams DH, Reyier EA, Basu N (2011) Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. Environ Monit Assessment 176(1-4):549–559.
Norris SB, Reistad NA, Rumbold DG (In this issue) Mercury in neonatal and blacktip sharks (Carcharhinus limbatus). Part II: Effects assessment. Ecotoxicology.
O’Bryhim JR, Adams DH, Spaet JL, Mills G, Lance SL (2017) Relationships of mercury concentrations across tissue types, muscle regions and fins for two shark species. Environ Pollut 223:323–333.
Pethybridge H, Cossa D, Butler EC (2010) Mercury in 16 demersal sharks from Southeast Australia: biotic and abiotic sources of variation and consumer health implications. Mar Environ Res 69(1):18–26.
Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ Sci Technol 41(1):125–131.
Pickhardt PC, Stepanova M, Fisher NS (2006) Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environ Toxicol Chem 25(8):2132–2142.
Prestbo EM, Gay DA (2009) Wet deposition of mercury in the US and Canada, 1996–2005: results and analysis of the NADP mercury deposition network (MDN). Atmos Environ 43(27):4223–4233.
Rumbold DG, Evans DW, Niemczyk S, Fink LE, Laine KA, Howard N, Krabbenhoft DP, Zucker M (2011) Source identification of Florida Bay’s methylmercury problem: mainland runoff versus atmospheric deposition and in situ production. Estuaries Coasts 34(3):494–513.
Rumbold DG, Lange TR, Richards D, DelPizzo G, Haas NA (2018) Mercury concentrations and ratios of stable isotopes of nitrogen and carbon in food webs of the Caloosahatchee Estuary, Florida. Florida Sci 81(4):105–112.
Rumbold DG, Wasno R, Hammerschlag N, Volety A (2014) Mercury accumulation in sharks from the coastal waters of Southwest Florida. Arch Environ Contam Toxicol 67(3):402–412.
Slemr F, Langer E (1992) Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature 355:434–437.
Southworth GR, Peterson MJ, Bogle MA (2004) Bioaccumulation factors for mercury in stream fish. Environ Pract 6(2):135–143.
Stopford W, Goldwater L (1975) Methylmercury in the environment: a review of current understanding. Environ Health Perspect 12:115.
Storelli M, Ceci E, Storelli A, Marcotrigiano G (2003) Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks: contaminant status and assessment. Mar Pollut Bull 46(8):1035–1039.
Thera JC, Rumbold DG (2014) Biomagnification of mercury through a subtropical coastal food web off Southwest Florida. Environm Toxicol Chem 33(1):65–73.
Tollefson L, Cordle F (1986) Methylmercury in fish: a review of residue levels, fish consumption and regulatory action in the United States. Environ Health Perspect 68:203.
United States Environmental Protection Agency/United States Food and Drug Administration (2004) What you need to know about mercury in fish and shellfish. EPA-823-R-04-005.
van Hees KE, Ebert DA (2017) An evaluation of mercury offloading in two Central California elasmobranchs. Sci Tot Environ 590–591:154–162.
Ward DM, Nislow KH, Chen CY, Folt CL (2010) Rapid, efficient growth reduces mercury concentrations in stream‐dwelling Atlantic Salmon. Trans Am Fish Soc 139(1):1–10.
Watanabe N, Tayama M, Inouye M, Yasutake A (2012) Distribution and chemical form of mercury in commercial fish tissues. J Toixcol Sci 37(4):853–861.
Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Chapter 16: ecotoxicology of mercury. In Hoffman DJ, Rattner BA, Burton GA Jr., Cairns J Jr. (Eds) Handbook of ecotoxicology, 2nd edn. CRC Press, Boca Raton, FL, pp 409–463.
Xu Q, Zhao L, Wang Y, Xie Q, Yin D, Feng X, Wang D (2018) Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. Environ Pollut 243:115–126.
Contributed Indexing :
Keywords: Chondrichthyes; Dietary exposure; Elasmobranch; Florida; Maternal offloading; Organs
Substance Nomenclature :
FXS1BY2PGL (Mercury)
Entry Date(s) :
Date Created: 20210108 Date Completed: 20210427 Latest Revision: 20210427
Update Code :
Czasopismo naukowe
Elasmobranchs are exposed to mercury (Hg) through a variety of pathways in the environment. This study assessed maternal offloading and diet-based Hg exposure for neonatal and juvenile blacktip sharks (Carcharhinus limbatus) from Charlotte Harbor located along southwest Florida's coast, a recognized Hg hotspot. Neonates (n = 57) had highest total Hg (THg) concentrations in the kidney (0.56 ± 0.26 mg kg -1 ; n = 38) and muscle (0.53 ± 0.17 mg kg -1 ; n = 57), followed by liver (0.31 ± 0.11 mg kg -1 ; n = 38), and blood (0.05 ± 0.033 mg kg -1 ; n = 57). Juveniles (n = 13) exhibited a different distribution with highest THg in the liver (0.868 ± 0.54 mg kg -1 ; n = 6), followed by the muscle (0.84 ± 0.28 mg kg -1 ; n = 13), kidney (0.55 ± 0.22 mg kg -1 ; n = 6), and blood (0.11 ± 0.04 mg kg -1 ; n = 11). The distribution of THg among tissues and liver-to-muscle ratios indicated that Hg originated primarily from maternal offloading in neonates, whereas juveniles continued to accumulate Hg through dietary exposure post-parturition. Additionally, comparisons between results of the present study and previous Florida blacktip shark surveys suggested that Hg levels have not declined in southwest Florida estuaries for over two decades.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies