Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking.

Tytuł:
Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking.
Autorzy:
Kwok C; California State University East Bay, Hayward, CA, USA.; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Lei K; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Pedrozo V; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Anderson L; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Ghotra S; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Walsh M; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Li L; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Yu J; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
Hopf FW; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA. .; Department of Psychiatry, Indiana University School of Medicine, 320 W. 15th Street, NB 300E, Indianapolis, IN, 46202, USA. .
Źródło:
Scientific reports [Sci Rep] 2021 Jan 08; Vol. 11 (1), pp. 231. Date of Electronic Publication: 2021 Jan 08.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Binge Drinking/*metabolism
Nucleus Accumbens/*metabolism
Orexin Receptors/*metabolism
Receptors, AMPA/*metabolism
Animals ; Female ; Male ; Mice ; Sex Characteristics
References:
Moos, R. H. & Moos, B. S. Rates and predictors of relapse after natural and treated remission from alcohol use disorders. Addiction 101, 212–222 (2006). (PMID: 16445550197611810.1111/j.1360-0443.2006.01310.x)
Bouchery, E. E., Harwood, H. J., Sacks, J. J., Simon, C. J. & Brewer, R. D. Economic costs of excessive alcohol consumption in the U.S., 2006. Am. J. Prevent. Med. 41, 516–24 (2011).
Dawson, D. A., Grant, B. F. & Li, T. K. Quantifying the risks associated with exceeding recommended drinking limits. Alcohol Clin. Exp. Res. 29, 902–908 (2005). (PMID: 1589773710.1097/01.ALC.0000164544.45746.A7)
Larimer, M. E., Palmer, R. S. & Marlatt, G. A. Relapse prevention. An overview of Marlatt's cognitive-behavioral model. Alcohol Res. Health 23, 151–60 (1999).
Rehm, J. et al. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 373, 2223–2233 (2009). (PMID: 10.1016/S0140-6736(09)60746-719560604)
CDC, Excessive Drinking Costs U.S. $223.5 Billion. 2014, Center for Disease Control: Atlanta, GA.
Esser, M. B. et al. Prevalence of alcohol dependence among US adult drinkers, 2009–2011. Prevent. Chronic Dis. CDC 11, 140329 (2014). (PMID: 10.5888/pcd11.140329)
Gowin, J. L., Sloan, M. E., Stangl, B. L., Vatsalya, V. & Ramchandani, V. A. Vulnerability for alcohol use disorder and rate of alcohol consumption. Am. J. Psych. 174, 1094–1101 (2017). (PMID: 10.1176/appi.ajp.2017.16101180)
Grant, B. F. et al. Epidemiology of DSM-5 alcohol use disorder: Results from the national epidemiologic survey on alcohol and related conditions III. JAMA Psych. 72, 757–766 (2015). (PMID: 10.1001/jamapsychiatry.2015.0584)
Spanagel, R. Alcoholism: A systems approach from molecular physiology to addictive behavior. Physiol. Rev. 89, 649–705 (2009). (PMID: 1934261610.1152/physrev.00013.2008)
Grant, B. F. et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM-IV alcohol use disorder in the United States, 2001–2002 to 2012–2013: Results from the national epidemiologic survey on alcohol and related conditions. JAMA Psych. 74, 911–923 (2017). (PMID: 10.1001/jamapsychiatry.2017.2161)
White, A. et al. Converging patterns of alcohol use and related outcomes among females and males in the United States, 2002 to 2012. Alcohol Clin. Exp. Res. 39, 1712–1726 (2015). (PMID: 2633187910.1111/acer.12815)
Carvalho, A. F., Heilig, M., Perez, A., Probst, C. & Rehm, J. Alcohol use disorders. Lancet 394, 781–792 (2019). (PMID: 3147850210.1016/S0140-6736(19)31775-1)
Becker, J. B. & Koob, G. F. Sex differences in animal models: Focus on addiction. Pharmacol Rev 68, 242–263 (2016). (PMID: 26772794481342610.1124/pr.115.011163)
Sneddon, E. A., White, R. D. & Radke, A. K. Sex differences in binge-like and aversion-resistant alcohol drinking in C57BL/6J mice. Alcohol Clin. Exp. Res. 43, 243–249 (2019). (PMID: 30431655)
Hopf, F. W. Do specific NMDA receptor subunits act as gateways for addictive behaviors?. Genes Brain Behav. 16, 118–138 (2017). (PMID: 2770693210.1111/gbb.12348)
Hopf, F. W. & Lesscher, H. M. Rodent models for compulsive alcohol intake. Alcohol 48, 253–264 (2014). (PMID: 24731992499304710.1016/j.alcohol.2014.03.001)
Randall, P. A., Stewart, R. T. & Besheer, J. Sex differences in alcohol self-administration and relapse-like behavior in Long-Evans rats. Pharmacol. Biochem. Behav. 156, 1–9 (2017). (PMID: 28347737549483310.1016/j.pbb.2017.03.005)
Fulenwider, H. D., Nennig, S. E., Price, M. E., Hafeez, H. & Schank, J. R. Sex differences in aversion-resistant ethanol intake in mice. Alcohol. Alcohol 54, 345–352 (2019). (PMID: 3088841410.1093/alcalc/agz022)
Sneddon, E. A., Ramsey, O. R., Thomas, A. & Radke, A. K. Increased responding for alcohol and resistance to aversion in female mice. Alcohol Clin. Exp. Res. (2020).
Hopf, F. W. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharm 168, 108013 (2020). (PMID: 10.1016/j.neuropharm.2020.108013)
Hopf, F. W. & Mangieri, R. A. Do alcohol-related AMPA-type glutamate receptor adaptations promote intake?. Handb. Exp. Pharmacol. 248, 157–186 (2018). (PMID: 10.1007/164_2018_105)
Chaudhri, N., Sahuque, L. L. & Janak, P. H. Ethanol seeking triggered by environmental context is attenuated by blocking dopamine D1 receptors in the nucleus accumbens core and shell in rats. Psychopharm 207, 303–314 (2009). (PMID: 10.1007/s00213-009-1657-6)
Chaudhri, N., Sahuque, L. L., Schairer, W. W. & Janak, P. H. Separable roles of the nucleus accumbens core and shell in context- and cue-induced alcohol-seeking. Neuropsychopharm 35, 783–791 (2010). (PMID: 10.1038/npp.2009.187)
Marchant, N. J. et al. Role of ventral subiculum in context-induced relapse to alcohol seeking after punishment-imposed abstinence. J Neurosci 36, 3281–3294 (2016). (PMID: 26985037479293910.1523/JNEUROSCI.4299-15.2016)
Mundt, A. et al. High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur. J. Neurosci. 29, 2401–2412 (2009). (PMID: 1949002710.1111/j.1460-9568.2009.06777.x)
Piccoli, L. et al. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharm 37, 1999–2011 (2012). (PMID: 10.1038/npp.2012.48)
Barker, J. M., Taylor, J. R. & Chandler, L. J. A unifying model of the role of the infralimbic cortex in extinction and habits. Learn. Mem. 21, 441–448 (2016). (PMID: 10.1101/lm.035501.114)
Lei, K. et al. Nucleus accumbens shell and mPFC but not insula orexin-1 receptors promote excessive alcohol drinking. Front. Neurosci. 10, 400 (2016). (PMID: 27625592500404310.3389/fnins.2016.00400)
Baldo, B. A. & Kelley, A. E. Amylin infusion into rat nucleus accumbens potently depresses motor activity and ingestive behavior. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1232–R1242 (2001). (PMID: 1155763210.1152/ajpregu.2001.281.4.R1232)
Kasten, C. R. & Boehm, S. L. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice. Behav Brain Res. 272, 238–247 (2014). (PMID: 25026094413466810.1016/j.bbr.2014.07.011)
Lum, E. N., Campbell, R. R., Rostock, C. & Szumlinski, K. K. mGluR1 within the nucleus accumbens regulates alcohol intake in mice under limited-access conditions. Neuropharm 79, 679–687 (2014). (PMID: 10.1016/j.neuropharm.2014.01.024)
Ramaker, M. J., Strong-Kaufman, M. N., Ford, M. M., Phillips, T. J. & Finn, D. A. Effect of nucleus accumbens shell infusions of ganaxolone or gaboxadol on ethanol consumption in mice. Psychopharm 232, 1415–1426 (2015). (PMID: 10.1007/s00213-014-3777-x)
Rewal, M. et al. Alpha4-containing GABAA receptors in the nucleus accumbens mediate moderate intake of alcohol. J. Neurosci. 29, 543–549 (2009). (PMID: 19144854276835910.1523/JNEUROSCI.3199-08.2009)
Stratford, T. R. & Wirtshafter, D. Opposite effects on the ingestion of ethanol and sucrose solutions after injections of muscimol into the nucleus accumbens shell. Behav. Brain. Res. 216, 514–518 (2011). (PMID: 2080479010.1016/j.bbr.2010.08.032)
Wilden, J. A. et al. Reduced ethanol consumption by alcohol-preferring (P) rats following pharmacological silencing and deep brain stimulation of the nucleus accumbens shell. J. Neurosurg. 120, 997–1005 (2014). (PMID: 24460492451627310.3171/2013.12.JNS13205)
Mahler, S. V., Moorman, D. E., Smith, R. J., James, M. H. & Aston-Jones, G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat. Neurosci. 17, 1298–1303 (2014). (PMID: 25254979433564810.1038/nn.3810)
Mahler, S. V., Smith, R. J., Moorman, D. E., Sartor, G. C. & Aston-Jones, G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res. 198, 79–121 (2012). (PMID: 22813971364389310.1016/B978-0-444-59489-1.00007-0)
Lawrence, A. J., Cowen, M. S., Yang, H. J., Chen, F. & Oldfield, B. The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol. 148, 752–759 (2006). (PMID: 16751790161707410.1038/sj.bjp.0706789)
Baimel, C. et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br. J. Pharmacol. 172, 334–348 (2014). (PMID: 24641197429295110.1111/bph.12639)
Borgland, S. L. et al. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 29, 11215–11225 (2009). (PMID: 19741128277174910.1523/JNEUROSCI.6096-08.2009)
Cason, A. M. et al. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol. Behav. 100, 419–428 (2010). (PMID: 20338186288617310.1016/j.physbeh.2010.03.009)
Lei, K. et al. Nucleus accumbens shell orexin-1 receptors are critical mediators of binge intake in excessive-drinking individuals. Front. Neurosci. 13, 88 (2019). (PMID: 30814925638103610.3389/fnins.2019.00088)
Alcaraz-Iborra, M. et al. Different molecular/behavioral endophenotypes in C57BL/6J mice predict the impact of OX1 receptor blockade on binge-like ethanol intake. Front. Behav. Neurosci. 11, 186 (2017). (PMID: 29066961564130110.3389/fnbeh.2017.00186)
Moorman, D. E. & Aston-Jones, G. Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol–preferring Sprague-Dawley rats. Alcohol 43, 379–386 (2009). (PMID: 19671464274139810.1016/j.alcohol.2009.07.002)
Moorman, D. E., James, M. H., Kilroy, E. A. & Aston-Jones, G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 1654, 34–42 (2017). (PMID: 2777128410.1016/j.brainres.2016.10.018)
Olney, J. J., Navarro, M. & Thiele, T. E. Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol Clin. Exp. Res. 39, 21–29 (2015). (PMID: 25623402438786810.1111/acer.12591)
Lei, K., Wegner, S. A., Yu, J. H. & Hopf, F. W. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharm 110, 431–437 (2016). (PMID: 10.1016/j.neuropharm.2016.08.008)
Anderson, R. I., Becker, H. C., Adams, B. L., Jesudason, C. D. & Rorick-Kehn, L. M. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front. Neurosci. 8, 33 (2014). (PMID: 24616657393394510.3389/fnins.2014.00033)
Lopez, M. F., Moorman, D. E., Aston-Jones, G. & Becker, H. C. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res. 1636, 74–80 (2016). (PMID: 26851547480860510.1016/j.brainres.2016.01.049)
Beckley, J. T., et al. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J. Neurosci. 36, 701–13. PMC4719011 (2016).
Renteria, R., Buske, T. R. & Morrisett, R. A. Long-term subregion-specific encoding of enhanced ethanol intake by D1DR medium spiny neurons of the nucleus accumbens. Addict. Biol. 23, 689–698 (2017). (PMID: 28656742626479010.1111/adb.12526)
Laguesse, S., et al. Prosapip1-dependent synaptic adaptations in the nucleus accumbens drive alcohol intake, seeking, and reward. Neuron 96, 145–159 e8 (2017).
Lei, K., Wegner, S. A., Yu, J. H., Simms, J. A. & Hopf, F. W. A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice. Alcohol 55, 9–16 (2016). (PMID: 27788780513178510.1016/j.alcohol.2016.07.008)
Lesscher, H. M., van Kerkhof, L. W. & Vanderschuren, L. J. Inflexible and indifferent alcohol drinking in male mice. Alcohol Clin. Exp. Res. 34, 1219–1225 (2010). (PMID: 20477770)
Seif, T. et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat. Neurosci. 16, 1094–1100 (2013). (PMID: 23817545393903010.1038/nn.3445)
Seif, T. et al. D-Serine and D-cycloserine reduce compulsive alcohol intake in rats. Neuropsychopharm 40, 2357–2367 (2015). (PMID: 10.1038/npp.2015.84)
Brown, R. M. et al. Orexin-1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue-induced reinstatement of ethanol-seeking in iP rats. Addict. Biol. 21, 603–612 (2015). (PMID: 2589962410.1111/adb.12251)
Smart, D. et al. SB-334867-A: the first selective orexin-1 receptor antagonist. Br. J. Pharmacol. 132, 1179–1182 (2001). (PMID: 11250867157267710.1038/sj.bjp.0703953)
Carvajal, F. et al. Orexin receptor 1 signaling contributes to ethanol binge-like drinking: Pharmacological and molecular evidence. Behav. Brain Res. 287, 230–237 (2015). (PMID: 2582792810.1016/j.bbr.2015.03.046)
Qi, K., Wei, C., Li, Y. & Sui, N. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference. Front. Behav. Neurosci. 7, 144 (2013). (PMID: 24133421379419410.3389/fnbeh.2013.00144)
Conrad, K. L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008). (PMID: 18500330257498110.1038/nature06995)
Russell, S. E. et al. Nucleus accumbens AMPA receptors are necessary for morphine-withdrawal-induced negative-affective states in rats. J. Neurosci. 36, 5748–5762 (2016). (PMID: 27225765487919610.1523/JNEUROSCI.2875-12.2016)
Scheyer, A. F. et al. AMPA receptor plasticity in accumbens core contributes to incubation of methamphetamine craving. Biol. Psych. 80, 661–670 (2016). (PMID: 10.1016/j.biopsych.2016.04.003)
White, S. L. et al. A critical role for the GluA1 accessory protein, SAP97 cocaine seeking. Neuropsychopharm 41, 736–750 (2016). (PMID: 10.1038/npp.2015.199)
Ding, X. et al. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility. Front. Behav. Neurosci. 8, 304 (2014). (PMID: 25249952415577610.3389/fnbeh.2014.00304)
Simms, J. A., Haass-Koffler, C. L., Bito-Onon, J., Li, R. & Bartlett, S. E. Mifepristone in the central nucleus of the amygdala reduces yohimbine stress-induced reinstatement of ethanol-seeking. Neuropsychopharm 37, 906–918 (2011). (PMID: 10.1038/npp.2011.268)
Pierce, R. C., Pierce-Bancroft, A. F. & Prasad, B. M. Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J. Neurosci. 19, 8685–8695 (1999). (PMID: 10493769678300110.1523/JNEUROSCI.19-19-08685.1999)
James, M. H. et al. Orexin-1 receptor signalling within the ventral tegmental area, but not the paraventricular thalamus, is critical to regulating cue-induced reinstatement of cocaine-seeking. Int. J. Neuropsychopharmacol. 14, 684–690 (2011). (PMID: 2144723210.1017/S1461145711000423)
Vendruscolo, L. F. et al. Glucocorticoid receptor antagonism decreases alcohol seeking in alcohol-dependent individuals. J. Clin. Invest. 125, 3193–3197 (2015). (PMID: 26121746456374810.1172/JCI79828)
Poon, A. D. et al. Ca2+/calmodulin-dependent protein kinase II and dimethyl sulfoxide affect the sealing frequencies of transected hippocampal neurons. J. Neurosci. Res. 96, 1208–1222 (2018). (PMID: 29577375598071610.1002/jnr.24232)
Tamagnini, F., Scullion, S., Brown, J. T. & Randall, A. D. Low concentrations of the solvent dimethyl sulphoxide alter intrinsic excitability properties of cortical and hippocampal pyramidal cells. PLoS ONE 9, e92557 (2014). (PMID: 24647720396027810.1371/journal.pone.0092557)
Espana, R. A. et al. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur. J. Neurosci. 31, 336–348 (2010). (PMID: 2003994310.1111/j.1460-9568.2009.07065.x)
Hollander, J. A., Lu, Q., Cameron, M. D., Kamenecka, T. M. & Kenny, P. J. Insular hypocretin transmission regulates nicotine reward. Proc. Natl. Acad. Sci. 105, 19480–19485 (2008). (PMID: 1903320310.1073/pnas.08080231052614786)
Plaza-Zabala, A., Flores, A., Maldonado, R. & Berrendero, F. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol. Psych. 71, 214–223 (2012). (PMID: 10.1016/j.biopsych.2011.06.025)
Silveyra, P., Cataldi, N., Lux-Lantos, V. & Libertun, C. Role of orexins in the hypothalamic-pituitary-ovarian relationships. Acta Physiol. 198, 355–360 (2010). (PMID: 10.1111/j.1748-1716.2009.02049.x)
Chen, C. T., Dun, S. L., Kwok, E. H., Dun, N. J. & Chang, J. K. Orexin A-like immunoreactivity in the rat brain. Neurosci. Lett. 260, 161–164 (1999). (PMID: 1007689210.1016/S0304-3940(98)00977-X)
Lee, J. S., Lee, E. Y. & Lee, H. S. Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat. Brain Res. 1598, 97–113 (2015). (PMID: 2552963110.1016/j.brainres.2014.12.029)
Cason, A. M. & Aston-Jones, G. Role of orexin/hypocretin in conditioned sucrose-seeking in female rats. Neuropharm 86, 97–102 (2014). (PMID: 10.1016/j.neuropharm.2014.07.007)
Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci. 26, 398–405 (2006). (PMID: 16407535667441010.1523/JNEUROSCI.2761-05.2006)
Zhou, L. et al. Orexin-1 receptor mediation of cocaine seeking in male and female rats. J. Pharm. Exp. Ther. 340, 801–809 (2012). (PMID: 10.1124/jpet.111.187567)
Jupp, B., Krivdic, B., Krstew, E. & Lawrence, A. J. The orexin(1) receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res. 1391, 54–59 (2011). (PMID: 2143994810.1016/j.brainres.2011.03.045)
Dhaher, R. et al. The orexin-1 receptor antagonist SB-334867 reduces alcohol relapse drinking, but not alcohol-seeking, in alcohol-preferring (P) rats. J. Addict. Med. 4, 153–159 (2010). (PMID: 20871792294364210.1097/ADM.0b013e3181bd893f)
Baimel, C., Lau, B. K., Qiao, M. & Borgland, S. L. Projection-target-defined effects of orexin and dynorphin on VTA dopamine neurons. Cell Rep. 18, 1346–1355 (2017). (PMID: 2817851410.1016/j.celrep.2017.01.030)
Olney, J. J., Navarro, M. & Thiele, T. E. The role of orexin signaling in the ventral tegmental area and central amygdala in modulating binge-like ethanol drinking behavior. Alcohol. Clin. Exp. Res. 41, 551–561 (2017). (PMID: 28097729533229910.1111/acer.13336)
Brown, R. M., Khoo, S. Y. & Lawrence, A. J. Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self-administration, but not cue-conditioned ethanol-seeking, in ethanol-preferring rats. Int. J. Neuropsychopharmacol. 16, 2067–2079 (2013). (PMID: 2360118710.1017/S1461145713000333)
Bangasser, D. A. & Wicks, B. Sex-specific mechanisms for responding to stress. J. Neurosci. Res. 95, 75–82 (2017). (PMID: 27870416512061210.1002/jnr.23812)
Borgland, S. L., Taha, S. A., Sarti, F., Fields, H. L. & Bonci, A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49, 589–601 (2006). (PMID: 1647666710.1016/j.neuron.2006.01.016)
Neasta, J., Ben Hamida, S., Yowell, Q., Carnicella, S. & Ron, D. Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proc. Natl. Acad. Sci. 107, 20093–8 (2010).
Liu, F. et al. mTORC1-dependent translation of collapsin response mediator protein-2 drives neuroadaptations underlying excessive alcohol-drinking behaviors. Mol. Psych. 22, 89–101 (2017). (PMID: 10.1038/mp.2016.12)
Satta, R., Hilderbrand, E. R. & Lasek, A. W. Ovarian hormones contribute to high levels of binge-like drinking by female mice. Alcoh. Clin. Exp. Res. 42, 286–294 (2018). (PMID: 10.1111/acer.13571)
Perry, A. N., Westenbroek, C. & Becker, J. B. The development of a preference for cocaine over food identifies individual rats with addiction-like behaviors. PLoS ONE 8, e79465 (2013). (PMID: 24260227383252810.1371/journal.pone.0079465)
Perry, A. N., Westenbroek, C., Jagannathan, L. & Becker, J. B. The roles of dopamine and alpha1-adrenergic receptors in cocaine preferences in female and male rats. Neuropsychopharm 40, 2696–2704 (2015). (PMID: 10.1038/npp.2015.116)
Grant Information:
P50 AA017072 United States AA NIAAA NIH HHS
Substance Nomenclature:
0 (Hcrtr1 protein, mouse)
0 (Orexin Receptors)
0 (Receptors, AMPA)
Entry Date(s):
Date Created: 20210109 Date Completed: 20210809 Latest Revision: 20230127
Update Code:
20240105
PubMed Central ID:
PMC7794293
DOI:
10.1038/s41598-020-79935-2
PMID:
33420199
Czasopismo naukowe
Alcohol use disorder exhausts substantial social and economic costs, with recent dramatic increases in female problem drinking. Thus, it is critically important to understand signaling differences underlying alcohol consumption across the sexes. Orexin-1 receptors (Ox1Rs) can strongly promote motivated behavior, and we previously identified Ox1Rs within nucleus accumbens shell (shell) as crucial for driving binge intake in higher-drinking male mice. Here, shell Ox1R inhibition did not alter female mouse alcohol drinking, unlike in males. Also, lower dose systemic Ox1R inhibition reduced compulsion-like alcohol intake in both sexes, indicating that female Ox1Rs can drive some aspects of pathological consumption, and higher doses of systemic Ox1R inhibition (which might have more off-target effects) reduced binge drinking in both sexes. In contrast to shell Ox1Rs, inhibiting shell calcium-permeable AMPA receptors (CP-AMPARs) strongly reduced alcohol drinking in both sexes, which was specific to alcohol since this did not reduce saccharin intake in either sex. Our results together suggest that the shell critically regulates binge drinking in both sexes, with shell CP-AMPARs supporting intake in both sexes, while shell Ox1Rs drove drinking only in males. Our findings provide important new information about sex-specific and -general mechanisms that promote binge alcohol intake and possible targeted therapeutic interventions.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies