Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Sex differences in executive control: A systematic review of functional neuroimaging studies.

Tytuł:
Sex differences in executive control: A systematic review of functional neuroimaging studies.
Autorzy:
Gaillard A; Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia.
Fehring DJ; Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC., Australia.; ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC., Australia.
Rossell SL; Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia.; Psychiatry, St Vincent's Hospital, Melbourne, VIC., Australia.
Źródło:
The European journal of neuroscience [Eur J Neurosci] 2021 Apr; Vol. 53 (8), pp. 2592-2611. Date of Electronic Publication: 2021 Feb 01.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Systematic Review
Język:
English
Imprint Name(s):
Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
MeSH Terms:
Functional Neuroimaging*
Sex Characteristics*
Brain ; Executive Function ; Female ; Humans ; Magnetic Resonance Imaging ; Male ; Neuroimaging
References:
Almey, A., Milner, T. A., & Brake, W. G. (2015). Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Hormones and Behavior, 74, 125-138. https://doi.org/10.1016/j.yhbeh.2015.06.010.
Archer, J. A., Lee, A., Qiu, A., & Annabel Chen, S. H. (2018). Functional connectivity of resting-state, working memory and inhibition networks in perceived stress. Neurobiology of Stress, 8, 186-201. https://doi.org/10.1016/j.ynstr.2017.01.002.
Arnold, A. P., & Chen, X. (2009). What does the four core genotypes mouse model tell us about sex differences in the brain and other tissues? Frontiers in Neuroendocrinology, 30, 1-9. https://doi.org/10.1016/j.yfrne.2008.11.001.
Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69, e55-e68. https://doi.org/10.1016/j.biopsych.2010.07.024.
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115-116. https://doi.org/10.1038/nn1003.
Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience, 26, 2424-2433. https://doi.org/10.1523/JNEUROSCI.4682-05.2006.
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170-177. https://doi.org/10.1016/j.tics.2004.02.010.
Baron-Cohen, S., Lombardo, M. V., Auyeung, B., Ashwin, E., Chakrabarti, B., & Knickmeyer, R. (2011). Why are autism spectrum conditions more prevalent in males? PLoS Biology, 9, e1001081. https://doi.org/10.1371/journal.pbio.1001081.
Barth, C., Villringer, A., & Sacher, J. (2015). Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Frontiers in Neuroscience, 9, 37. https://doi.org/10.3389/fnins.2015.00037.
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7-15. https://doi.org/10.1016/0010-0277(94)90018-3.
Becker, J. B., Arnold, A. P., Berkley, K. J., Blaustein, J. D., Eckel, L. A., Hampson, E., Herman, J. P., Marts, S., Sadee, W., Steiner, M., Taylor, J., & Young, E. (2005). Strategies and methods for research on sex differences in brain and behavior. Endocrinology, 146, 1650-1673. https://doi.org/10.1210/en.2004-1142.
Beery, A. K., & Zucker, I. (2011). Sex bias in neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews, 35, 565-572. https://doi.org/10.1016/j.neubiorev.2010.07.002.
Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. Journal of General Psychology, 39, 15-22. https://doi.org/10.1080/00221309.1948.9918159.
Boghi, A., Rasetti, R., Avidano, F., Manzone, C., Orsi, L., D’Agata, F., Caroppo, P., Bergui, M., Rocca, P., Pulvirenti, L., Bradac, G. B., Bogetto, F., Mutani, R., & Mortara, P. (2006). The effect of gender on planning: An fMRI study using the Tower of London task. NeuroImage, 33, 999-1010. https://doi.org/10.1016/j.neuroimage.2006.07.022.
Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112, 2224-2232. https://doi.org/10.1016/s1388-2457(01)00691-5.
Bolla, K. I., Eldreth, D. A., Matochik, J. A., & Cadet, J. L. (2004). Sex-related differences in a gambling task and its neurological correlates. Cerebral Cortex, 14, 1226-1232. https://doi.org/10.1093/cercor/bhh083.
Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7, 356-366. https://doi.org/10.3758/cabn.7.4.356.
Bourisly, A. K., & Pothen, A. (2016). Influence of sex on P300: An event-related potential electrophysiological study. NeuroReport, 27, 172-179. https://doi.org/10.1097/WNR.0000000000000519.
Butler, T., Imperato-McGinley, J., Pan, H., Voyer, D., Cordero, J., Zhu, Y. S., Stern, E., & Silbersweig, D. (2006). Sex differences in mental rotation: Top-down versus bottom-up processing. NeuroImage, 32, 445-456. https://doi.org/10.1016/j.neuroimage.2006.03.030.
Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews Neuroscience, 7, 477-484. https://doi.org/10.1038/nrn1909.
Caldirola, D., Sangiorgio, E., Riva, A., Grassi, M., Alciati, A., Scialò, C., & Perna, G. (2017). Does gender influence cognitive function in non-psychotic depression? Personalised Medicine, 4-6, 25-31. https://doi.org/10.1016/j.pmip.2017.10.002.
Carrus, D., Christodoulou, T., Hadjulis, M., Haldane, M., Galea, A., Koukopoulos, A., Kumari, V., & Frangou, S. (2010). Gender differences in immediate memory in bipolar disorder. Psychological Medicine, 40, 1349-1355. https://doi.org/10.1017/S0033291709991644.
Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I. H., Morris, A. P., & Mattingley, J. B. (2006). Executive “Brake Failure” following Deactivation of Human Frontal Lobe. Journal of Cognitive Neuroscience, 18, 444-455. https://doi.org/10.1162/089892906775990606.
Chen, X., Sachdev, P. S., Wen, W., & Anstey, K. J. (2007). Sex differences in regional gray matter in healthy individuals aged 44-48 years: A voxel-based morphometric study. NeuroImage, 36, 691-699. https://doi.org/10.1016/j.neuroimage.2007.03.063.
Clayson, P. E., Clawson, A., & Larson, M. J. (2011). Sex differences in electrophysiological indices of conflict monitoring. Biological Psychology, 87, 282-289. https://doi.org/10.1016/j.biopsycho.2011.03.011.
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. A Proposal. Archives of General Psychiatry, 44, 573-588. https://doi.org/10.1001/archpsyc.1987.01800180093014.
Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2005). Exploring the unity and diversity of the neural substrates of executive functioning. Human Brain Mapping, 25, 409-423. https://doi.org/10.1002/hbm.20118.
Conners, C. K., Staff, M. H. S., Connelly, V., Campbell, S., MacLean, M., & Barnes, J. (2000). Conners’ continuous performance Test II (CPT II v. 5). Multi-Health Syst Inc, 29, 175-196.
Deckler, E., Hodgins, G. E., Pinkham, A. E., Penn, D. L., & Harvey, P. D. (2018). Social cognition and neurocognition in schizophrenia and healthy controls: Intercorrelations of performance and effects of manipulations aimed at increasing task difficulty. Frontiers in Psychiatry, 9, 356. https://doi.org/10.3389/fpsyt.2018.00356.
Dumais, K. M., Chernyak, S., Nickerson, L. D., & Janes, A. C. (2018). Sex differences in default mode and dorsal attention network engagement. PLoS One, 13, e0199049. https://doi.org/10.1371/journal.pone.0199049.
Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14, 456-467. https://doi.org/10.1111/j.1469-8986.1977.tb01312.x.
Eagle, D. M., Bari, A., & Robbins, T. W. (2008). The neuropsychopharmacology of action inhibition: Cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berl), 199, 439-456. https://doi.org/10.1007/s00213-008-1127-6.
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784-1790. https://doi.org/10.1038/nn1594.
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143-149. https://doi.org/10.3758/BF03203267.
Everett, J., Lavoie, K., Gagnon, J. F., & Gosselin, N. (2001). Performance of patients with schizophrenia on the Wisconsin Card Sorting Test (WCST). Journal of Psychiatry and Neuroscience, 26, 123-130.
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152-170. https://doi.org/10.1111/j.1469-8986.2007.00602.x.
Frith, C., & Dolan, R. (1996). The role of the prefrontal cortex in higher cognitive functions. Brain Research Cognitive Brain Research, 5, 175-181. https://doi.org/10.1016/s0926-6410(96)00054-7.
Gaillard, A., Fehring, D. J., & Rossell, S. L. (2020). A systematic review and meta-analysis of behavioural sex differences in executive control. European Journal of Neuroscience, https://doi.org/10.1111/ejn.14946.
Gaillard, A., Rossell, S. L., Carruthers, S. P., Sumner, P. J., Michie, P. T., Woods, W., Neill, E., Phillipou, A., Toh, W. L., & Hughes, M. E. (2020). Greater activation of the response inhibition network in females compared to males during stop signal task performance. Behavioural Brain Research, 386, 112586. https://doi.org/10.1016/j.bbr.2020.112586.
Geary, D. C. (2018). Autism in the broader context of cognitive sex differences. Proceedings of the National Academy of Sciences of the United States of America, 115, 12089-12091. https://doi.org/10.1073/pnas.1817772115.
Giedd, J. N., Raznahan, A., Mills, K. L., & Lenroot, R. K. (2012). Review: Magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biology of Sex Differences, 3, 19. https://doi.org/10.1186/2042-6410-3-19.
Goldstein, J. M., Seidman, L. J., Goodman, J. M., Koren, D., Lee, H., Weintraub, S., & Tsuang, M. T. (1998). Are there sex differences in neuropsychological functions among patients with schizophrenia. The American Journal of Psychiatry, 155, 1358-1364. https://doi.org/10.1176/ajp.155.10.1358.
Grissom, N. M., & Reyes, T. M. (2019). Correction: Let's call the whole thing off: Evaluating gender and sex differences in executive function. Neuropsychopharmacology, 44, 1344. https://doi.org/10.1038/s41386-019-0367-y.
Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience, 19, 4065-4072. https://doi.org/10.1523/JNEUROSCI.19-10-04065.1999.
Gusnard, D. A., Raichle, M. E., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685-694. https://doi.org/10.1038/35094500.
Halari, R., Sharma, T., Hines, M., Andrew, C., Simmons, A., & Kumari, V. (2006). Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women. Experimental Brain Research, 169, 1-14. https://doi.org/10.1007/s00221-005-0118-7.
Hatta, T., & Nagaya, K. (2009). Menstrual cycle phase effects on memory and Stroop task performance. Archives of Sexual Behavior, 38, 821-827. https://doi.org/10.1007/s10508-008-9445-7.
Heller, J., Dogan, I., Schulz, J. B., & Reetz, K. (2014). Evidence for gender differences in cognition, emotion and quality of life in Parkinson's disease? Aging and Disease, 5, 63-75. https://doi.org/10.14366/AD.2014.050063.
Hidalgo-Lopez, E., Mueller, K., Harris, T., Aichhorn, M., Sacher, J., & Pletzer, B. (2020). Human menstrual cycle variation in subcortical functional brain connectivity: A multimodal analysis approach. Brain Structure and Function, 225, 591-605. https://doi.org/10.1007/s00429-019-02019-z.
Hjelmervik, H., Hausmann, M., Osnes, B., Westerhausen, R., & Specht, K. (2014). Resting states are resting traits-an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLoS One, 9, e103492. https://doi.org/10.1371/journal.pone.0103492.
Jacobs, E., & D'Esposito, M. (2011). Estrogen shapes dopamine-dependent cognitive processes: Implications for women's health. Journal of Neuroscience, 31, 5286-5293. https://doi.org/10.1523/JNEUROSCI.6394-10.2011.
Joseph, J. E., Swearingen, J. E., Corbly, C. R., Curry, T. E. Jr, & Kelly, T. H. (2012). Influence of estradiol on functional brain organization for working memory. NeuroImage, 59, 2923-2931. https://doi.org/10.1016/j.neuroimage.2011.09.067.
Kalmady, S. V., Agarwal, S. M., Shivakumar, V., Jose, D., Venkatasubramanian, G., & Reddy, Y. C. (2013). Revisiting Geschwind's hypothesis on brain lateralisation: A functional MRI study of digit ratio (2D:4D) and sex interaction effects on spatial working memory. Laterality, 18, 625-640. https://doi.org/10.1080/1357650X.2012.744414.
Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A. M., Pletikos, M., Meyer, K. A., Sedmak, G., Guennel, T., Shin, Y., Johnson, M. B., Krsnik, Z., Mayer, S., Fertuzinhos, S., Umlauf, S., Lisgo, S. N., Vortmeyer, A., … Sestan, N. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478, 483-489. https://doi.org/10.1038/nature10523.
Khanna, N., Altmeyer, W., Zhuo, J., & Steven, A. (2015). Functional neuroimaging: Fundamental principles and clinical applications. Neuroradiology Journal, 28, 87-96. https://doi.org/10.1177/1971400915576311.
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55, 352-358. https://doi.org/10.1037/h0043688.
Knezevic, M. (2018). To go or not to go: Personality, behaviour and neurophysiology of impulse control in men and women. Personality and Individual Differences, 123, 21-26. https://doi.org/10.1016/j.paid.2017.10.039.
Koscik, T., O'Leary, D., Moser, D. J., Andreasen, N. C., & Nopoulos, P. (2009). Sex differences in parietal lobe morphology: Relationship to mental rotation performance. Brain and Cognition, 69, 451-459. https://doi.org/10.1016/j.bandc.2008.09.004.
Lappin, J. S., & Eriksen, C. W. (1966). Use of a delayed signal to stop a visual reaction-time response. Journal of Experimental Psychology, 72, 805-811. https://doi.org/10.1037/h0021266.
Larson, M. J., South, M., & Clayson, P. E. (2011). Sex differences in error-related performance monitoring. NeuroReport, 22, 44-48. https://doi.org/10.1097/WNR.0b013e3283427403.
Leonard, C. M., Towler, S., Welcome, S., Halderman, L. K., Otto, R., Eckert, M. A., & Chiarello, C. (2008). Size matters: Cerebral volume influences sex differences in neuroanatomy. Cerebral Cortex, 18, 2920-2931. https://doi.org/10.1093/cercor/bhn052.
Li, C. S., Huang, C., Constable, R. T., & Sinha, R. (2006). Gender differences in the neural correlates of response inhibition during a stop signal task. NeuroImage, 32, 1918-1929. https://doi.org/10.1016/j.neuroimage.2006.05.017.
Li, C. S., Zhang, S., Duann, J. R., Yan, P., Sinha, R., & Mazure, C. M. (2009). Gender differences in cognitive control: An extended investigation of the stop signal task. Brain Imaging and Behavior, 3, 262-276. https://doi.org/10.1007/s11682-009-9068-1.
Li, R., & Singh, M. (2014). Sex differences in cognitive impairment and Alzheimer's disease. Frontiers in Neuroendocrinology, 35, 385-403. https://doi.org/10.1016/j.yfrne.2014.01.002.
Li, T., Luo, Q., & Gong, H. (2010). Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy. Behavioural Brain Research, 209, 148-153. https://doi.org/10.1016/j.bbr.2010.01.033.
Liu, G., Hu, P. P., Fan, J., & Wang, K. (2013). Gender differences associated with orienting attentional networks in healthy subjects. Chinese Medical Journal, 126, 2308-2312.
Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: A model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10, 276-291.
Luders, E., Gaser, C., Narr, K. L., & Toga, A. W. (2009). Why sex matters: Brain size independent differences in gray matter distributions between men and women. Journal of Neuroscience, 29, 14265-14270. https://doi.org/10.1523/JNEUROSCI.2261-09.2009.
Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT:R). Educational Psychology Review, 25, 69-94. https://doi.org/10.1007/s10648-012-9215-x.
Maki, P. M., & Dumas, J. (2009). Mechanisms of action of estrogen in the brain: Insights from human neuroimaging and psychopharmacologic studies. Seminars in Reproductive Medicine, 27, 250-259. https://doi.org/10.1055/s-0029-1216278.
Matsui, M., Gur, R. C., Turetsky, B. I., Yan, M. X., & Gur, R. E. (2000). The relation between tendency for psychopathology and reduced frontal brain volume in healthy people. Neuropsychiatry, Neuropsychology & Behavioral Neurology, 13, 155-162. https://pubmed.ncbi.nlm.nih.gov/10910085/.
McCarthy, M. M., & Arnold, A. P. (2011). Reframing sexual differentiation of the brain. Nature Neuroscience, 14, 677-683. https://doi.org/10.1038/nn.2834.
McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D., & De Vries, G. J. (2012). Sex differences in the brain: The not so inconvenient truth. Journal of Neuroscience, 32, 2241-2247. https://doi.org/10.1523/JNEUROSCI.5372-11.2012.
Melynyte, S., Ruksenas, O., & Griskova-Bulanova, I. (2017). Sex differences in equiprobable auditory Go/NoGo task: Effects on N2 and P3. Experimental Brain Research, 235, 1565-1574. https://doi.org/10.1007/s00221-017-4911-x.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex ‘‘Frontal Lobe’’ tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100. https://doi.org/10.1006/cogp.1999.0734.
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A. & Group, P.-P (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1. https://doi.org/10.1186/2046-4053-4-1.
Moola, S., Munn, Z., Tufanaru, C., Aromataris, E., Sears, K., Sfetcu, R., Currie, M., Lisy, K., Qureshi, R., Mattis, P., & Mu, P. (2017) Chapter 7: Systematic reviews of etiology and risk. In E. Aromataris & Z. Munn (Eds.), Joanna Briggs Institute Reviewer’s Manual. The Joanna Briggs Institute.
Muller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., Tench, C. R., Yarkoni, T., Nichols, T. E., Turkeltaub, P. E., Wager, T. D., & Eickhoff, S. B. (2018). Ten simple rules for neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 151-161. https://doi.org/10.1016/j.neubiorev.2017.11.012.
Mulvihill, L. E., Skilling, T. A., & Vogel-Sprott, M. (1997). Alcohol and the ability to inhibit behavior in men and women. Journal of Studies on Alcohol and Drugs, 58, 600-605. https://doi.org/10.15288/jsa.1997.58.600.
Nelson, J. K., Reuter-Lorenz, P. A., Sylvester, C. Y. C., Jonides, J., & Smith, E. E. (2003). Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proceedings of the National Academy of Sciences of the United States of America, 100, 11171-11175. https://doi.org/10.1073/pnas.1334125100.
Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220-246. https://doi.org/10.1037/0033-2909.126.2.220.
Nopoulos, P., Flaum, M., O’Leary, D., & Andreasen, N. C. (2000). Sexual dimorphism in the human brain: Evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research, 98, 1-13. https://doi.org/10.1016/S0925-4927(99)00044-X.
Omura, K., & Kusumoto, K. (2015). Sex differences in neurophysiological responses are modulated by attentional aspects of impulse control. Brain and Cognition, 100, 49-59. https://doi.org/10.1016/j.bandc.2015.09.006.
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947-957. https://doi.org/10.1038/nrn2513.
Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalography and Clinical Neurophysiology, 60, 423-434. https://doi.org/10.1016/0013-4694(85)91017-x.
Pritschet, L., Santander, T., Taylor, C. M., Layher, E., Yu, S., Miller, M. B., Grafton, S. T., & Jacobs, E. G. (2020). Functional reorganization of brain networks across the human menstrual cycle. NeuroImage, 220, 117091. https://doi.org/10.1016/j.neuroimage.2020.117091.
Ramos-Loyo, J., Angulo-Chavira, A., Llamas-Alonso, L. A., & Gonzalez-Garrido, A. A. (2016). Sex differences in emotional contexts modulation on response inhibition. Neuropsychologia, 91, 290-298. https://doi.org/10.1016/j.neuropsychologia.2016.08.023.
Reekes, T. H., Higginson, C. I., Ledbetter, C. R., Sathivadivel, N., Zweig, R. M., & Disbrow, E. A. (2020). Sex specific cognitive differences in Parkinson disease. NPJ Parkinson’s Disease, 6, 7. https://doi.org/10.1038/s41531-020-0109-1.
Reinius, B., & Jazin, E. (2009). Prenatal sex differences in the human brain. Molecular Psychiatry, 14(987), 988-989. https://doi.org/10.1038/mp.2009.79.
Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience and Biobehavioral Reviews, 39, 34-50. https://doi.org/10.1016/j.neubiorev.2013.12.004.
Rutter, M., Caspi, A., & Moffitt, T. E. (2003). Using sex differences in psychopathology to study causal mechanisms: Unifying issues and research strategies. Journal of Child Psychology and Psychiatry, 44, 1092-1115. https://doi.org/10.1111/1469-7610.00194.
Sacher, J., Neumann, J., Okon-Singer, H., Gotowiec, S., & Villringer, A. (2013). Sexual dimorphism in the human brain: Evidence from neuroimaging. Magnetic Resonance Imaging, 31, 366-375. https://doi.org/10.1016/j.mri.2012.06.007.
Salinas, J., Mills, E. D., Conrad, A. L., Koscik, T., Andreasen, N. C., & Nopoulos, P. (2012). Sex differences in parietal lobe structure and development. Gender Medicine, 9, 44-55. https://doi.org/10.1016/j.genm.2012.01.003.
Schlaepfer, T. E., Harris, G. J., Tien, A. Y., Peng, L., Lee, S., & Pearlson, G. D. (1995). Structural differences in the cerebral cortex of healthy female and male subjects: A magnetic resonance imaging study. Psychiatry Research, 61, 129-135. https://doi.org/10.1016/0925-4927(95)02634-a.
Schmidt, H., Jogia, J., Fast, K., Christodoulou, T., Haldane, M., Kumari, V., & Frangou, S. (2009). No gender differences in brain activation during the N-back task: An fMRI study in healthy individuals. Human Brain Mapping, 30, 3609-3615. https://doi.org/10.1002/hbm.20783.
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society London B: Biological Sciences, 298, 199-209. https://doi.org/10.1098/rstb.1982.0082.
Shanmugan, S., & Epperson, C. N. (2014). Estrogen and the prefrontal cortex: Towards a new understanding of estrogen's effects on executive functions in the menopause transition. Human Brain Mapping, 35, 847-865. https://doi.org/10.1002/hbm.22218.
Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38, 387-401. https://doi.org/10.1016/0013-4694(75)90263-1.
Stalnaker, T. A., Takahashi, Y., Roesch, M. R., & Schoenbaum, G. (2009). Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology, 56, 63-72. https://doi.org/10.1016/j.neuropharm.2008.07.019.
Takeuchi, H., Taki, Y., Nouchi, R., Yokoyama, R., Kotozaki, Y., Nakagawa, S., Sekiguchi, A., Iizuka, K., Yamamoto, Y., Hanawa, S., Araki, T., Miyauchi, C. M., Shinada, T., Sakaki, K., Sassa, Y., Nozawa, T., Ikeda, S., Yokota, S., Daniele, M., & Kawashima, R. (2017). Global associations between regional gray matter volume and diverse complex cognitive functions: Evidence from a large sample study. Scientific Reports, 7, 10014. https://doi.org/10.1038/s41598-017-10104-8.
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2013). Brain structures associated with executive functions during everyday events in a non-clinical sample. Brain Structure and Function, 218, 1017-1032. https://doi.org/10.1007/s00429-012-0444-z.
Thimm, M., Weis, S., Hausmann, M., & Sturm, W. (2014). Menstrual cycle effects on selective attention and its underlying cortical networks. Neuroscience, 258, 307-317. https://doi.org/10.1016/j.neuroscience.2013.11.010.
Vaskinn, A., Sundet, K., Simonsen, C., Hellvin, T., Melle, I., & Andreassen, O. A. (2011). Sex differences in neuropsychological performance and social functioning in schizophrenia and bipolar disorder. Neuropsychology, 25, 499-510. https://doi.org/10.1037/a0022677.
Verbruggen, F., Aron, A. R., Band, G. P., Beste, C., Bissett, P. G., Brockett, A. T., Brown, J. W., Chamberlain, S. R., Chambers, C. D., Colonius, H., Colzato, L. S., Corneil, B. D., Coxon, J. P., Dupuis, A., Eagle, D. M., Garavan, H., Greenhouse, I., Heathcote, A., Huster, R. J., … Boehler, C. N. (2019). A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. Elife, 8, https://doi.org/10.7554/eLife.46323.
Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12, 418-424. https://doi.org/10.1016/j.tics.2008.07.005.
Verdejo-Garcia, A., Bechara, A., Recknor, E. C., & Perez-Garcia, M. (2006). Decision-making and the Iowa Gambling Task: Ecological validity in individuals with substance dependence. Psychol. Belg., 46, 55-78. https://doi.org/10.5334/pb-46-1-2-55.
Voyer, D., Voyer, S. D., & Saint-Aubin, J. (2017). Sex differences in visual-spatial working memory: A meta-analysis. Psychonomic Bulletin and Review, 24, 307-334. https://doi.org/10.3758/s13423-016-1085-7.
Yuan, J., He, Y., Qinglin, Z., Chen, A., & Li, H. (2008). Gender differences in behavioral inhibitory control: ERP evidence from a two-choice oddball task. Psychophysiology, 45, 986-993. https://doi.org/10.1111/j.1469-8986.2008.00693.x.
Zaidi, Z. F. (2010). Gender differences in human brain: A review. The Open Anatomy Journal, 2, 37-55. https://doi.org/10.2174/1877609401002010037.
Zhang, W., & Lu, J. (2012). Time course of automatic emotion regulation during a facial Go/Nogo task. Biological Psychology, 89, 444-449. https://doi.org/10.1016/j.biopsycho.2011.12.011.
Contributed Indexing:
Keywords: EEG; cognition; fMRI; neuroimaging; sex
Entry Date(s):
Date Created: 20210110 Date Completed: 20210629 Latest Revision: 20210629
Update Code:
20240105
DOI:
10.1111/ejn.15107
PMID:
33423339
Czasopismo naukowe
The number of studies investigating sex differences in executive functions, particularly those using human functional neuroimaging techniques, has risen dramatically in the past decade. However, the influences of sex on executive function are still underexplored and poorly characterized. To address this, we conducted a systematic literature review of functional neuroimaging studies investigating sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Following the application of exclusion criteria, 21 studies were included, with a total of 677 females and 686 males. Ten of these studies were fMRI and PET, eight were EEG, and three were NIRS. At present, there is evidence for sex differences in the neural networks underlying all tasks of executive control included in this review suggesting males and females engage different strategies depending on task demands. There was one task exception, the 2-Back task, which showed no sex differences. Due to methodological variability and the involvement of multiple neural networks, a simple overarching statement with regard to gender differences during executive control cannot be provided. As such, we discuss limitations within the current literature and methodological considerations that should be employed in future research. Importantly, sex differences in neural mechanisms are present in the majority of tasks assessed, and thus should not be ignored in future research. PROSPERO registration information: CRD42019124772.
(© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies