Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

How I investigate minimal residual disease in acute lymphoblastic leukemia.

Tytuł:
How I investigate minimal residual disease in acute lymphoblastic leukemia.
Autorzy:
Correia RP; Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil.
Bento LC; Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil.
de Sousa FA; Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil.
Barroso RS; Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil.
Campregher PV; Clinical Pathology Laboratory, Molecular Genetics Division, Hospital Israelita Albert Einstein, São Paulo, Brazil.
Bacal NS; Clinical Pathology Laboratory, Flow Cytometry Division, Hospital Israelita Albert Einstein, São Paulo, Brazil.; Centro de Hematologia de São Paulo, São Paulo, Brazil.
Źródło:
International journal of laboratory hematology [Int J Lab Hematol] 2021 Jun; Vol. 43 (3), pp. 354-363. Date of Electronic Publication: 2021 Jan 10.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Scientific Publications, c2007-
MeSH Terms:
Neoplasm, Residual/*diagnosis
Precursor Cell Lymphoblastic Leukemia-Lymphoma/*diagnosis
Animals ; B-Lymphocytes/pathology ; Flow Cytometry/methods ; Gene Fusion ; Gene Rearrangement ; High-Throughput Nucleotide Sequencing/methods ; Humans ; Immunoglobulin G/genetics ; Neoplasm, Residual/genetics ; Neoplasm, Residual/pathology ; Polymerase Chain Reaction/methods ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology ; Receptors, Antigen, T-Cell/genetics ; T-Lymphocytes/pathology
References:
Berry DA, Zhou S, Higley H, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3(7):e170580.
Jeha S, Pui CH. Risk-adapted treatment of pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23(5):973-990.
Chen X, Wood BL. How do we measure MRD in ALL and how should measurements affect decisions. Re: treatment and prognosis? Best Pract Res Clin Haematol. 2017;30(3):237-248.
van Dongen JJ, van der Velden VH, Bruggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996-4009.
Bruggemann M, Kotrova M. Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Blood Adv. 2017;1(25):2456-2466.
Theunissen P, Mejstrikova E, Sedek L, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129(3):347-357.
Borowitz MJ, Pullen DJ, Winick N, Martin PL, Bowman WP, Camitta B. Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children's oncology group. Cytometry B Clin Cytom. 2005;68(1):18-24.
Lacombe F, Campos L, Allou K, et al. Prognostic value of multicenter flow cytometry harmonized assessment of minimal residual disease in acute myeloblastic leukemia. Hematol Oncol. 2018;36(2):422-428.
Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer-Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591-598.
Coustan-Smith E, Sancho J, Hancock ML, et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood. 2002;100(7):2399-2402.
Volejnikova J, Mejstrikova E, Valova T, et al. Minimal residual disease in peripheral blood at day 15 identifies a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with superior prognosis. Haematologica. 2011;96(12):1815-1821.
O'Connor D, Jesson J, Bahey M, Eyre L, Lawson S. Analysis of early disease response in childhood acute lymphoblastic leukaemia: can peripheral blood replace bone marrow analysis? Br J Haematol. 2013;161(5):743-745.
Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood. 2008;111(12):5477-5485.
Hedley BD, Keeney M. Technical issues: flow cytometry and rare event analysis. Int J Lab Hematol. 2013;35(3):344-350.
Oldaker T, Whitby L, Saber M, Holden J, Wallace PK, Litwin V. ICCS/ESCCA consensus guidelines to detect GPI-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders part 4 - assay validation and quality assurance. Cytometry B Clin Cytom. 2018;94(1):67-81.
Kalina T, Flores-Montero J, van der Velden VH, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986-2010.
van Dongen JJ, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908-1975.
Swerdlow SH, Campo E, Harris NL, et al., WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC; 2017.
Dworzak MN, Froschl G, Printz D, et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia. 2004;18(4):703-708.
Lucio P, Gaipa G, van Lochem EG, et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia. 2001;15(8):1185-1192.
Campana D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23(5):1083-1098.
Mejstrikova E, Fronkova E, Kalina T, et al. Detection of residual B precursor lymphoblastic leukemia by uniform gating flow cytometry. Pediatr Blood Cancer. 2010;54(1):62-70.
Shaver AC, Seegmiller AC. B Lymphoblastic leukemia minimal residual disease assessment by flow cytometric analysis. Clin Lab Med. 2017;37(4):771-785.
Karawajew L, Dworzak M, Ratei R, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica. 2015;100(7):935-944.
Gaipa G, Basso G, Aliprandi S, et al. Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells. Cytometry B Clin Cytom. 2008;74(3):150-155.
Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6(1):e2014073.
Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783-1786.
Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351(9102):550-554.
Sedek L, Theunissen P, Sobral da Costa E, et al. Differential expression of CD73, CD86 and CD304 in normal vs. leukemic B-cell precursors and their utility as stable minimal residual disease markers in childhood B-cell precursor acute lymphoblastic leukemia. J Immunol Methods. 2018;475:112429.
Wang W, Gao L, Li Y, et al. The application of CD73 in minimal residual disease monitoring using flow cytometry in B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2016;57(5):1174-1181.
Solly F, Angelot F, Garand R, et al. CD304 is preferentially expressed on a subset of B-lineage acute lymphoblastic leukemia and represents a novel marker for minimal residual disease detection by flow cytometry. Cytometry A. 2012;81(1):17-24.
Cherian S, Stetler-Stevenson M. Flow cytometric monitoring for residual disease in B lymphoblastic leukemia post T cell engaging targeted therapies. Curr Protoc Cytom. 2018;86(1):e44.
Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57-66.
Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017-4023.
Cherian S, Miller V, McCullouch V, Dougherty K, Fromm JR, Wood BL. A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. Cytometry B Clin Cytom. 2018;94(1):112-120.
van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901-1928.
Della Starza I, De Novi LA, Santoro A, et al. Digital droplet PCR and next-generation sequencing refine minimal residual disease monitoring in acute lymphoblastic leukemia. Leuk Lymphoma. 2019;60(11):2838-2840.
Wu D, Sherwood A, Fromm JR, et al. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med. 2012;4(134):134ra63.
Faham M, Zheng J, Moorhead M, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173-5180.
Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol. 2015;12(6):344-357.
Alm SJ, Engvall C, Asp J, Palmqvist L, Abrahamsson J, Fogelstrand L. Minimal residual disease monitoring in childhood B lymphoblastic leukemia with t(12;21)(p13;q22); ETV6-RUNX1: concordant results using quantitation of fusion transcript and flow cytometry. Int J Lab Hematol. 2017;39(2):121-128.
Coccaro N, Tota G, Zagaria A, et al. Monitoring minimal residual disease by ddPCR in acute lymphoblastic leukemia associated with the FGFR1 gene rearrangement. Int J Lab Hematol. 2018;40(6):e117-e120.
Ryan J, Quinn F, Meunier A, et al. Minimal residual disease detection in childhood acute lymphoblastic leukaemia patients at multiple time-points reveals high levels of concordance between molecular and immunophenotypic approaches. Br J Haematol. 2009;144(1):107-115.
Zaliova M, Fronkova E, Krejcikova K, et al. Quantification of fusion transcript reveals a subgroup with distinct biological properties and predicts relapse in BCR/ABL-positive ALL: implications for residual disease monitoring. Leukemia. 2009;23(5):944-951.
Hovorkova L, Zaliova M, Venn NC, et al. Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood. 2017;129(20):2771-2781.
Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125(24):3711-3719.
Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12(12):2006-2014.
Bruggemann M, Droese J, Bolz I, et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia. 2000;14(8):1419-1425.
Verhagen OJ, Willemse MJ, Breunis WB, et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2000;14(8):1426-1435.
Morley AA, Latham S, Brisco MJ, et al. Sensitive and specific measurement of minimal residual disease in acute lymphoblastic leukemia. J Mol Diagn. 2009;11(3):201-210.
Gawad C, Pepin F, Carlton VE, et al. Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia. Blood. 2012;120(22):4407-4417.
Fronkova E, Muzikova K, Mejstrikova E, et al. B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transpl. 2008;42(3):187-196.
Coccaro N, Anelli L, Zagaria A, et al. Droplet digital PCR Is a robust tool for monitoring minimal residual disease in adult Philadelphia-positive acute lymphoblastic leukemia. J Mol Diagn. 2018;20(4):474-482.
Robins HS, Campregher PV, Srivastava SK, et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood. 2009;114(19):4099-4107.
Shyr D, Liu Q. Next generation sequencing in cancer research and clinical application. Biol Proced Online. 2013;15(1):4.
Kotrova M, Muzikova K, Mejstrikova E, et al. The predictive strength of next-generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood. 2015;126(8):1045-1047.
Sellner L, Bruggemann M, Schlitt M, et al. GvL effects in T-prolymphocytic leukemia: evidence from MRD kinetics and TCR repertoire analyses. Bone Marrow Transpl. 2017;52(4):544-551.
Wu J, Jia S, Wang C, et al. Minimal residual disease detection and evolved IGH clones analysis in acute B lymphoblastic leukemia using IGH deep sequencing. Front Immunol. 2016;7:403.
Wood B, Wu D, Crossley B, et al. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood. 2018;131(12):1350-1359.
ClonoSEQ cleared for residual cancer testing. Cancer Discov. 2018;8(12):OF6. https://doi.org/10.1158/2159-8290.
Ikoma MR, Beltrame MP, Ferreira SI, et al. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia. Rev Bras Hematol Hemoter. 2015;37(6):406-413.
Contributed Indexing:
Keywords: MRD techniques; acute lymphoblastic leukemia; minimal residual disease
Substance Nomenclature:
0 (Immunoglobulin G)
0 (Receptors, Antigen, T-Cell)
Entry Date(s):
Date Created: 20210110 Date Completed: 20210614 Latest Revision: 20210614
Update Code:
20240105
DOI:
10.1111/ijlh.13463
PMID:
33423385
Czasopismo naukowe
Minimal Residual Disease (MRD) is the most important independent prognostic factor in acute lymphoblastic leukemia (ALL) and refers to the deep level of measurable disease in cases with complete remission by conventional pathologic analysis, especially by cytomorphology. MRD can be detected by multiparametric flow cytometry, molecular approaches such as quantitative polymerase chain reaction for immunoglobulin and T-cell receptor (IG/TR) gene rearrangements or fusion genes transcript, and high-throughput sequencing for IG/TR. Despite the proven clinical usefulness in detecting MRD, these methods have differences in sensitivity, specificity, applicability, turnaround time and cost. Knowing and understanding these differences, as well as the principles and limitations of each technology, is essential to laboratory standardization and correct interpretation of MRD results in line with treatment time points, therapeutic settings, and clinical trials. Here, we review the methodological approaches to measure MRD in ALL and discuss the advantages and limitations of the most commonly used techniques.
(© 2021 John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies