Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote in Situ Articular Cartilage Regeneration in Rabbits.

Tytuł:
Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote in Situ Articular Cartilage Regeneration in Rabbits.
Autorzy:
Chen M; Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China.; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Li Y; Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
Liu S; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Feng Z; School of Material Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
Wang H; Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, People's Republic of China.
Yang D; Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China.
Guo W; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Yuan Z; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Gao S; Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
Zhang Y; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Zha K; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Huang B; Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, People's Republic of China.
Wei F; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Sang X; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Tian Q; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Yang X; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Sui X; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Zhou Y; Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China.
Zheng Y; Department of Materials Science and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.
Guo Q; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
Źródło:
Bioactive materials [Bioact Mater] 2020 Dec 22; Vol. 6 (7), pp. 1932-1944. Date of Electronic Publication: 2020 Dec 22 (Print Publication: 2021).
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Beijing : Ke Ai Publishing
References:
Adv Exp Med Biol. 2018;1077:251-283. (PMID: 30357693)
Trends Biotechnol. 2014 Sep;32(9):483-92. (PMID: 25059433)
Osteoarthritis Cartilage. 2007 Dec;15(12):1397-402. (PMID: 17604187)
Adv Funct Mater. 2020 Nov 11;30(46):. (PMID: 33708030)
Stem Cells Int. 2018 Jul 12;2018:5310471. (PMID: 30123286)
J Bone Joint Surg Am. 2003;85-A Suppl 2:45-57. (PMID: 12721345)
Stem Cells Int. 2012;2012:652034. (PMID: 22685475)
Science. 2019 Aug 2;365(6452):482-487. (PMID: 31371612)
Int J Nanomedicine. 2018 Mar 15;13(T-NANO 2014 Abstracts):87-90. (PMID: 29593403)
Adv Mater. 2020 Apr;32(13):e1902516. (PMID: 31512289)
Adv Healthc Mater. 2014 Oct;3(10):1578-87. (PMID: 24729580)
Biomaterials. 2016 Mar;83:156-68. (PMID: 26774563)
Nat Commun. 2014 Jun 02;5:3935. (PMID: 24887553)
J Biomed Mater Res A. 2017 May;105(5):1383-1392. (PMID: 28152586)
Cartilage. 2018 Oct;9(4):339-345. (PMID: 28393540)
J Orthop Translat. 2018 Sep 09;16:40-52. (PMID: 30723680)
ACS Appl Mater Interfaces. 2019 Nov 6;11(44):41626-41639. (PMID: 31596568)
Stem Cell Res Ther. 2020 May 19;11(1):180. (PMID: 32430067)
Expert Opin Drug Discov. 2018 Apr;13(4):307-326. (PMID: 29421943)
J Biomed Mater Res A. 2007 Sep 1;82(3):618-29. (PMID: 17315230)
Biomaterials. 2019 Mar;197:207-219. (PMID: 30660996)
Science. 2012 Nov 16;338(6109):917-21. (PMID: 23161992)
J Orthop Translat. 2019 Jun 25;18:128-141. (PMID: 31508316)
J Mater Chem B. 2017 Mar 28;5(12):2273-2285. (PMID: 32263618)
Nanomedicine (Lond). 2015;10(18):2893-905. (PMID: 26377158)
Tissue Eng Part B Rev. 2013 Dec;19(6):485-502. (PMID: 23672709)
Am J Transl Res. 2019 Oct 15;11(10):6650-6659. (PMID: 31737215)
Biomaterials. 2016 Dec;111:13-26. (PMID: 27718449)
Biomaterials. 2016 Aug;98:1-22. (PMID: 27177218)
Acta Biomater. 2019 Apr 1;88:301-313. (PMID: 30825604)
Am J Sports Med. 2009 Oct;37(10):2053-63. (PMID: 19251676)
Stem Cell Res Ther. 2018 May 11;9(1):133. (PMID: 29751848)
Biotechnol Bioeng. 2018 Feb;115(2):495-506. (PMID: 29064570)
Stem Cells Int. 2018 Feb 13;2018:6542198. (PMID: 29666653)
Bull Rheum Dis. 1967 Mar;17(7):447-52. (PMID: 4860066)
Carbohydr Polym. 2019 Mar 1;207:297-316. (PMID: 30600012)
Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):976-982. (PMID: 27772729)
Biofabrication. 2020 May 12;12(3):035015. (PMID: 32150742)
Tissue Eng Part B Rev. 2014 Feb;20(1):28-39. (PMID: 23678952)
Biotechnol Adv. 2020 Sep - Oct;42:107421. (PMID: 31381963)
ACS Nano. 2019 Aug 27;13(8):9595-9606. (PMID: 31381856)
Acta Biomater. 2020 Sep 1;113:196-209. (PMID: 32561472)
Front Chem. 2020 May 07;8:315. (PMID: 32457867)
Nat Rev Rheumatol. 2017 Dec;13(12):719-730. (PMID: 29118440)
Nat Biomed Eng. 2020 Apr;4(4):370-380. (PMID: 31695178)
Biomaterials. 2016 Jun;91:57-72. (PMID: 26999455)
Contributed Indexing:
Keywords: Articular cartilage; Extracellular matrix; Low-temperature deposition manufacturing; Tissue engineering; Waterborne polyurethane
Entry Date(s):
Date Created: 20210111 Latest Revision: 20220218
Update Code:
20240105
PubMed Central ID:
PMC7772526
DOI:
10.1016/j.bioactmat.2020.12.009
PMID:
33426368
Czasopismo naukowe
Tissue engineering provides a promising avenue for treating cartilage defects. However, great challenges remain in the development of structurally and functionally optimized scaffolds for cartilage repair and regeneration. In this study, decellularized cartilage extracellular matrix (ECM) and waterborne polyurethane (WPU) were employed to construct WPU and WPU-ECM scaffolds by water-based 3D printing using low-temperature deposition manufacturing (LDM) system, which combines rapid deposition manufacturing with phase separation techniques. The scaffolds successfully achieved hierarchical macro-microporous structures. After adding ECM, WPU scaffolds were markedly optimized in terms of porosity, hydrophilia and bioactive components. Moreover, the optimized WPU-ECM scaffolds were found to be more suitable for cell distribution, adhesion, and proliferation than the WPU scaffolds. Most importantly, the WPU-ECM scaffold could facilitate the production of glycosaminoglycan (GAG) and collagen and the upregulation of cartilage-specific genes. These results indicated that the WPU-ECM scaffold with hierarchical macro-microporous structures could recreate a favorable microenvironment for cell adhesion, proliferation, differentiation, and ECM production. In vivo studies further revealed that the hierarchical macro-microporous WPU-ECM scaffold combined with the microfracture procedure successfully regenerated hyaline cartilage in a rabbit model. Six months after implantation, the repaired cartilage showed a similar histological structure and mechanical performance to that of normal cartilage. In conclusion, the hierarchical macro-microporous WPU-ECM scaffold may be a promising candidate for cartilage tissue engineering applications in the future.
Competing Interests: We declare that there is no conflict of interests regarding the publication of this paper entitled, “Hierarchical Macro‐microporous WPU-ECM Scaffolds Combined with Microfracture Promote in Situ Articular Cartilage Regeneration in Rabbits”.
(© 2020 [The Author/The Authors].)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies