Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Nutritional and developmental programming effects of insulin.

Tytuł:
Nutritional and developmental programming effects of insulin.
Autorzy:
Dearden L; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
Bouret SG; Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition Research Center, Lille, France.; University of Lille, Lille, France.
Ozanne SE; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
Źródło:
Journal of neuroendocrinology [J Neuroendocrinol] 2021 Jan 13; Vol. 33 (4), pp. e12933. Date of Electronic Publication: 2021 Jan 13.
Publication Model:
Ahead of Print
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
References:
Warrington NM, Howe LD, Paternoster L, et al. A genome-wide association study of body mass index across early life and childhood. Int J Epidemiol. 2015;44:700-712.
Davies S. Annual Report of the Chief Medical Officer, 2014, The Health of the 51%: women. London: Department of Health; 2015.
Scheil W, Jolly K, Scott J, Catcheside B, Sage L, Kennare R. Pregnancy Outcome in South Australia 2015, regnancy Outcome Unit, SA Health. Adelaide: Government of South Australia; 2017.
Chu SY, Kim SY, Bish CL. Prepregnancy obesity prevalence in the United States, 2004-2005. Matern Child Health J. 2009;13:614-620.
Perng W, Oken E, Dabelea D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia. 2019;62:1779-1788.
Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia. 2019;62:1789-1801.
Smith J, Cianflone K, Biron S, et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab. 2009;94:4275-4283.
Catalano PM. The impact of gestational diabetes and maternal obesity on the mother and her offspring. J Dev Orig Health Dis. 2010;1:208-215.
Misra VK, Straughen JK, Trudeau S. Maternal serum leptin during pregnancy and infant birth weight: the influence of maternal overweight and obesity. Obesity (Silver Spring). 2013;21:1064-1069.
Fowden AL. The role of insulin in fetal growth. Early Hum Dev. 1992;29:177-181.
Spaventi R, Antica M, Pavelić K. Insulin and insulin-like growth factor I (IGF I) in early mouse embryogenesis. Development. 1990;108:491-495.
Deltour L, Leduque P, Blume N, et al. Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci U S A. 1993;90:527-531.
Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304:108-110.
Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of feeding by leptin. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101:1020-1027.
Diderholm B, Stridsberg M, Ewald U, Lindeberg-Nordén S, Gustafsson J. Increased lipolysis in non-obese pregnant women studied in the third trimester. BJOG. 2005;112:713-718.
Burt RL. Peripheral utilization of glucose in pregnancy. III. Insulin tolerance. Obstet Gynecol. 1956;7:658-664.
Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991;165:1667-1672.
Friedman JE, Ishizuka T, Shao J, Huston L, Highman T, Catalano P. Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes. Diabetes. 1999;48:1807-1814.
Davidson MB. Insulin resistance of late pregnancy does not include the liver. Metabolism. 1984;33:532-537.
Kirwan JP, Hauguel-De Mouzon S, Lepercq J, et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes. 2002;51:2207-2213.
Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30(Suppl 2):S112-119.
Shao J, Catalano PM, Yamashita H, et al. Decreased insulin receptor tyrosine kinase activity and plasma cell membrane glycoprotein-1 overexpression in skeletal muscle from obese women with gestational diabetes mellitus (GDM): evidence for increased serine/threonine phosphorylation in pregnancy and GDM. Diabetes. 2000;49:603-610.
Xiang AH, Peters RK, Trigo E, Kjos SL, Lee WP, Buchanan TA. Multiple metabolic defects during late pregnancy in women at high risk for type 2 diabetes. Diabetes. 1999;48:848-854.
Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113:1126-1133.
Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr. 1256S;71(5 Suppl):1256S-1261S.
Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol. 2011;204:479-487.
Adam PA, Teramo K, Raiha N, Gitlin D, Schwartz R. Human fetal insulin metabolismearly in gestation. Response to acutelevation of the fetal glucose concentration and placental tranfer of human insulin-I-131. Diabetes. 1969;18:409-416.
Philipps AF, Carson BS, Meschia G, Battaglia FC. Insulin secretion in fetal and newborn sheep. Am J Physiol. 1978;235:E467-474.
Grasso S, Palumbo G, Rugolo S, Cianci A, Tumino G, Reitano G. Human fetal insulin secretion in response to maternal glucose and leucine administration. Pediatr Res. 1980;14:782-783.
Catalano PM, Drago NM, Amini SB. Maternal carbohydrate metabolism and its relationship to fetal growth and body composition. Am J Obstet Gynecol. 1995;172:1464-1470.
Schwartz R, Gruppuso PA, Petzold K, Brambilla D, Hiilesmaa V, Teramo KA. Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care. 1994;17:640-648.
Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991-2002.
Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care. 2009;32:1076-1080.
Villalobos-Labra R, Westermeier F, Pizarro C, et al. Neonates from women with pregestational maternal obesity show reduced umbilical vein endothelial response to insulin. Placenta. 2019;86:35-44.
Maric T, Kanu C, Johnson MR, Savvidou MD. Maternal, neonatal insulin resistance and neonatal anthropometrics in pregnancies following bariatric surgery. Metabolism. 2019;97:25-31.
Travers JP, Pratten MK, Beck F. Effects of low insulin levels on rat embryonic growth and development. Diabetes. 1989;38:773-778.
Philipps AF, Rosenkrantz TS, Clark RM, Knox I, Chaffin DG, Raye JR. Effects of fetal insulin deficiency on growth in fetal lambs. Diabetes. 1991;40:20-27.
Tamemoto H, Kadowaki T, Tobe K, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372:182-186.
Accili D, Drago J, Lee EJ, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996;12:106-109.
Susa JB, Schwartz R. Effects of hyperinsulinemia in the primate fetus. Diabetes. 1985;34(Suppl 2):36-41.
Ogata ES, Collins JW, Finley S. Insulin injection in the fetal rat: accelerated intrauterine growth and altered fetal and neonatal glucose homeostasis. Metabolism. 1988;37:649-655.
Vileisis RA, Oh W. Enhanced fatty acid synthesis in hyperinsulinemic rat fetuses. J Nutr. 1983;113:246-252.
Beaumont RN, Horikoshi M, McCarthy MI, Freathy RM. How Can Genetic Studies Help Us to Understand Links Between Birth Weight and Type 2 Diabetes? Curr Diab Rep. 2017;17:22.
Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet. 1998;19:268-270.
Beaumont RN, Warrington NM, Cavadino A, et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet. 2018;27:742-756.
Dimas AS, Lagou V, Barker A, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63:2158-2171.
Freathy RM, Hayes MG, Urbanek M, et al. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: common genetic variants in GCK and TCF7L2 are associated with fasting and postchallenge glucose levels in pregnancy and with the new consensus definition of gestational diabetes mellitus from the International Association of Diabetes and Pregnancy Study Groups. Diabetes. 2010;59:2682-2689.
Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41:77-81.
Hughes AE, Nodzenski M, Beaumont RN, et al. Fetal genotype and maternal glucose have independent and additive effects on birth weight. Diabetes. 2018;67:1024-1029.
Desoye G, Hartmann M, Blaschitz A, et al. Insulin receptors in syncytiotrophoblast and fetal endothelium of human placenta. Immunohistochemical evidence for developmental changes in distribution pattern. Histochemistry. 1994;101:277-285.
Desoye G, Hartmann M, Jones CJ, et al. Location of insulin receptors in the placenta and its progenitor tissues. Microsc Res Tech. 1997;38:63-75.
Hiden U, Maier A, Bilban M, et al. Insulin control of placental gene expression shifts from mother to foetus over the course of pregnancy. Diabetologia. 2006;49:123-131.
Friis CM, Qvigstad E, Paasche Roland MC, et al. Newborn body fat: associations with maternal metabolic state and placental size. PLoS One. 2013;8:e57467.
Mandl M, Haas J, Bischof P, Nöhammer G, Desoye G. Serum-dependent effects of IGF-I and insulin on proliferation and invasion of human first trimester trophoblast cell models. Histochem Cell Biol. 2002;117:391-399.
Desoye G, Hofmann HH, Weiss PA. Insulin binding to trophoblast plasma membranes and placental glycogen content in well-controlled gestational diabetic women treated with diet or insulin, in well-controlled overt diabetic patients and in healthy control subjects. Diabetologia. 1992;35:45-55.
Colomiere M, Permezel M, Riley C, Desoye G, Lappas M. Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol. 2009;160:567-578.
Alonso A, Del Rey CG, Navarro A, Tolivia J, González CG. Effects of gestational diabetes mellitus on proteins implicated in insulin signaling in human placenta. Gynecol Endocrinol. 2006;22:526-535.
Castillo-Castrejon M, Jansson T, Powell TL. No evidence of attenuation of placental insulin-stimulated Akt phosphorylation and amino acid transport in maternal obesity and gestational diabetes mellitus. Am J Physiol Endocrinol Metab. 2019;317:E1037-E1049.
Gauster M, Desoye G, Tötsch M, Hiden U. The placenta and gestational diabetes mellitus. Curr Diab Rep. 2012;12:16-23.
Taricco E, Radaelli T, Nobile de Santis MS, Cetin I. Foetal and placental weights in relation to maternal characteristics in gestational diabetes. Placenta. 2003;24:343-347.
Jansson T, Wennergren M, Illsley NP. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab. 1993;77:1554-1562.
James-Allan LB, Arbet J, Teal SB, Powell TL, Jansson T. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab. 2019;104:4225-4038.
Lewis RM, Childs CE, Calder PC. New perspectives on placental fatty acid transfer. Prostagland Leukot Essent Fatty Acids. 2018;138:24-29.
Magnusson-Olsson AL, Hamark B, Ericsson A, Wennergren M, Jansson T, Powell TL. Gestational and hormonal regulation of human placental lipoprotein lipase. J Lipid Res. 2006;47:2551-2561.
Ruiz-Palacios M, Prieto-Sánchez MT, Ruiz-Alcaraz AJ, et al. Insulin treatment may alter fatty acid carriers in placentas from gestational diabetes subjects. Int J Mol Sci. 2017;18:1203.
Elchalal U, Schaiff WT, Smith SD, et al. Insulin and fatty acids regulate the expression of the fat droplet-associated protein adipophilin in primary human trophoblasts. Am J Obstet Gynecol. 2005;193:1716-1723.
Miller HC. The effect of diabetic and prediabetic pregnancies on the fetus and newborn infant. J Pediatr. 1946;29:455-461.
Basu M, Garg V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Res. 2018;110:1504-1516.
Clark CM. The stimulation by insulin of amino acid uptake and protein synthesis in the isolated fetal rat heart. Biol Neonate. 1971;19:379-388.
Devaskar SU, Szewczyk K, Devaskar UP. The fetal heart insulin receptor responds differently to varying plasma insulin concentrations. Dev Pharmacol Ther. 1987;10:153-162.
Bertrand L, Horman S, Beauloye C, Vanoverschelde JL. Insulin signalling in the heart. Cardiovasc Res. 2008;79:238-248.
Huang T, Kelly A, Becker SA, Cohen MS, Stanley CA. Hypertrophic cardiomyopathy in neonates with congenital hyperinsulinism. Arch Dis Child Fetal Neonatal Ed. 2013;98:F351-354.
Lin X, Yang P, Reece EA. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am J Obstet Gynecol. 2017;217:216.e211-216.e213.
Gordon EE, Reinking BE, Hu S, et al. Maternal hyperglycemia directly and rapidly induces cardiac septal overgrowth in fetal rats. J Diabetes Res. 2015;2015:479565.
Cooper MJ, Enderlein MA, Tarnoff H, Rogé CL. Asymmetric septal hypertrophy in infants of diabetic mothers. Fetal echocardiography and the impact of maternal diabetic control. Am J Dis Child. 1992;146:226-229.
Sheehan PQ, Rowland TW, Shah BL, McGravey VJ, Reiter EO. Maternal diabetic control and hypertrophic cardiomyopathy in infants of diabetic mothers. Clin Pediatr (Phila). 1986;25:266-271.
Reini SA, Wood CE, Keller-Wood M. The ontogeny of genes related to ovine fetal cardiac growth. Gene Expr Patterns. 2009;9:122-128.
Sundgren NC, Giraud GD, Schultz JM, Lasarev MR, Stork PJ, Thornburg KL. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes. Am J Physiol Regul Integr Comp Physiol. 2003;285:R1481-1489.
Lumbers ER, Kim MY, Burrell JH, et al. Effects of intrafetal IGF-I on growth of cardiac myocytes in late-gestation fetal sheep. Am J Physiol Endocrinol Metab. 2009;296:E513-519.
Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47:R1-10.
Ursem NT, Clark EB, Keller BB, Wladimiroff JW. Fetal heart rate and umbilical artery velocity variability in pregnancies complicated by insulin-dependent diabetes mellitus. Ultrasound Obstet Gynecol. 1999;13:312-316.
Rizzo G, Arduini D, Romanini C. Accelerated cardiac growth and abnormal cardiac flow in fetuses of type I diabetic mothers. Obstet Gynecol. 1992;80:369-376.
Milley JR. Effect of insulin on the distribution of cardiac output in the fetal lamb. Pediatr Res. 1987;22:168-172.
Fehlert E, Willmann K, Fritsche L, et al. Gestational diabetes alters the fetal heart rate variability during an oral glucose tolerance test: a fetal magnetocardiography study. BJOG. 2017;124:1891-1898.
Havrankova J, Roth J, Brownstein MJ. Concentrations of Insulin and of Insulin Receptors in the Brain are Independent of Peripheral Insulin Levels. J Clin Invest. 1979;64:636-642.
Potau N, Escofet MA, Martinez MC. Ontogenesis of insulin receptors in human cerebral cortex. J Endocrinol Invest. 1991;14:53-58.
Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24:855-872.
Kar S, Chabot JG, Quirion R. Quantitative autoradiographic localization of [125I]insulin-like growth factor I, [125I]insulin-like growth factor II, and [125I]insulin receptor binding sites in developing and adult rat brain. J Comp Neurol. 1993;333:375-397.
Abbott M-A, Wells DG, Fallon JR. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci. 1999;19:7300-7308.
Choi J, Ko J, Racz B, et al. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 Small GTPases. J Neurosci. 2005;25:869-879.
Govind S, Kozma R, Monfries C, Lim L, Ahmed S. Cdc42hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol. 2001;152:579-594.
Miki H, Takenawa T. WAVE2 serves a functional partner of IRSp53 by regulating its interaction with Rac. Biochem Biophys Res Comm. 2002;293:93-99.
Cheng CM, Mervis RF, Niu S-L, et al. Insulin-like growth factor 1 is essential for normal dendritic growth. J Neurosci Res. 2003;73:1-9.
Toran-Allerand CD, Ellis L, Pfenninger KH. Estrogen and insulin synergism in neurite growth enhancement in vitro: mediation of steroid effects by interactions with growth factors? DevBrain Res. 1988;469:87-100.
Schechter R, Abboud M, Johnson G. Brain endogenous insulin effects on neurite growth within fetal rat neuron cell cultures. Brain Res Dev Brain Res. 1999;116:159-167.
Recio-Pinto E, Rechler MM, Ishii DN. Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J Neurosci. 1986;6:1211-1219.
Lázár BA, Jancsó G, Pálvölgyi L, Dobos I, Nagy I, Sántha P. Insulin confers differing effects on neurite outgrowth in separate populations of cultured dorsal root ganglion neurons: the role of the insulin receptor. Front Neurosci. 2018;12:732.
Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. 2004;24:2797-2805.
Grove KL, Allen S, Grayson BE, Smith MS. Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience. 2003;116:393-406.
Plagemann A, Heidrich I, Götz F, Rohde W. Lifelong enhanced diabetes susceptibility and obesity after temporary intrahypothalamic hyperinsulinism during brain organization. Exp Clin Endocrinol. 1992;99:91-95.
Jones A, Olster D, States B. Maternal insulin manipulations in rats organize body weight and noradrenergic innervation of the hypothalamus in gonadally intact male offspring. Dev Brain Res. 1996;97:16-21.
Steculorum SM, Bouret SG. Maternal Diabetes Compromises the Organization of Hypothalamic Feeding Circuits and Impairs Leptin Sensitivity in Offspring. Endocrinology. 2011;152:4171-4179.
Vogt MC, Paeger L, Hess S, et al. Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding. Cell. 2014;156:495-509.
Plagemann A, Harder T, Janert U, et al. Malformations of Hypothalamic Nuclei in Hyperinsulinemic Offspring of Rats with Gestational Diabetes. Dev Neurosci. 1999;21:58-67.
Plagemann A, Harder T, Melchior K, Rake A, Rohde W, Dörner G. Elevation of hypothalamic neuropeptide Y-neurons in adult offspring of diabetic mother rats. NeuroReport. 1998;10:3211-3216.
Franke K, Harder T, Aerts L, et al. 'Programming' of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats. Brain Res. 2005;1031:276-283.
Plum L, Lin HV, Aizawa KS, Liu Y, Accili D. InsR/FoxO1 Signaling Curtails Hypothalamic POMC Neuron Number. PLoS One. 2012;7:e31487.
Fahrenkrog S, Harder T, Stolaczyk E, et al. Cross-fostering to diabetic rat dams affects early development of mediobasal hypothalamic nuclei regulating food intake, body weight, and metabolism. J Nutrition. 2004;134:648-654.
Plagemann A, Harder T, Rake A, et al. Morphological alterations of hypothalamic nuclei due to intrahypothalamic hyperinsulinism in newborn rats. Int J Dev Neurosci. 1999;17:37-44.
Dearden L, Buller S, Furigo IC, Fernandez-Twin DS, Ozanne SE. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol Metabol. 2020;42:101079.
Schellong K, Melchior K, Ziska T, et al. Hypothalamic insulin receptor expression and DNA promoter methylation are sex-specifically altered in adult offspring of high-fat diet (HFD)-overfed mother rats. J Nutr Biochem. 2019;67:28-35.
Davidowa H, Plagemann A. Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats. NeuroReport. 2007;18:521-524.
Plagemann A, Harder T, Rake A, Melchior K, Rohde W. Dörner Gn. hypothalamic nuclei are malformed in weanling offspring of low protein malnourished rat dams. J Nutrition. 2000;130:2582-2589.
Toran-Allerand CD, Bentham W, Miranda RC, Anderson JP. Insulin influences astroglial morphology and glial fibrillary acidic protein (GFAP) expression in organotypic cultures. Brain Res. 1991;558:296-304.
MacDonald AJ, Robb JL, Morrissey NA, Beall C, Ellacott KLJ. Astrocytes in neuroendocrine systems: An overview. J Neuroendocrinol. 2019;31:e12726.
Fernandez-Twinn DS, Gascoin G, Musial B, et al. Exercise rescues obese mothers' insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Sci Rep. 2017;7:44650.
Beeson JH, Blackmore HL, Carr SK, et al. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol Metab. 2018;16:35-44.
Simonds SE, Pryor JT, Ravussin E, et al. Leptin mediates the increase in blood pressure associated with obesity. Cell. 2014;159:1404-1416.
Wahab RJ, Voerman E, Jansen PW, et al. Maternal glucose concentrations in early pregnancy and cardiometabolic risk factors in childhood. Obesity. 2020;28:985-993.
Vanky E, Zahlsen K, Spigset O, Carlsen SM. Placental passage of metformin in women with polycystic ovary syndrome. Fertil Steril. 2005;83:1575-1578.
Pollex EK, Feig DS, Koren G. Oral hypoglycemic therapy: understanding the mechanisms of transplacental transfer. J Matern Fetal Neonatal Med. 2010;23:224-228.
Tarry-Adkins JL, Aiken CE, Ozanne SE. Comparative impact of pharmacological treatments for gestational diabetes on neonatal anthropometry independent of maternal glycaemic control: A systematic review and meta-analysis. PLoS Med. 2020;17:e1003126.
Ng S-F, Lin RCY, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs b-cell dysfunction in female rat offspring. Nature. 2010;467:963-966.
Lecomte V, Maloney CA, Wang KW, Morris MJ. Effects of paternal obesity on growth and adiposity of male offspring. Am J Physiol Endocrinol Metab. 2017;312:E117-E125.
Grant Information:
MC_UU_00014/4 United Kingdom MRC_ Medical Research Council; MC_UU_12012/4 United Kingdom MRC_ Medical Research Council; RG/17/12/33167 United Kingdom BHF_ British Heart Foundation
Contributed Indexing:
Keywords: developmental programming; diabetes; hormones; hypothalamus; obesity
Entry Date(s):
Date Created: 20210113 Latest Revision: 20240222
Update Code:
20240223
DOI:
10.1111/jne.12933
PMID:
33438814
Czasopismo naukowe
The discovery of insulin in 1921 was a major breakthrough in medicine and for therapy in patients with diabetes. The dramatic rise in the prevalence of overweight and obesity has been tightly linked to an increased prevalence of gestational diabetes mellitus (GDM), which poses major health concerns. Babies born to GDM mothers are more likely to develop obesity, type 2 diabetes and cardiovascular disease later in life. Evidence accumulated during the past two decades has revealed that high levels insulin, such as those observed during GDM, can have a widespread effect on the development and function of a variety of organs. This review summarises our current knowledge on the role of insulin in the placenta, cardiovascular system and brain during critical periods of development, as well as how it can contribute to lifelong metabolic regulation. We also discuss possible intervention strategies to ameliorate and hopefully reverse the developmental defects associated with obesity and GDM.
(© 2021 British Society for Neuroendocrinology.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies